3,206 research outputs found

    Renal function in Palestine sunbirds: elimination of excess water does not constrain energy intake

    Get PDF
    Copyright © 2004 Company of BiologistsAlthough the renal responses of birds to dehydration have received significant attention, the consequences of ingesting and processing large quantities of water have been less studied. Nectar-feeding birds must often deal with exceptionally high water intake rates in order to meet their high mass-specific energy demands. Birds that ingest large volumes of water may either eliminate excess water in the kidney or regulate the volume of water absorbed in the gastrointestinal tract. Because water absorption in the gastrointestinal tract of Palestine sunbirds (Nectarinia osea) decreases with increasing water ingestion rate, we predicted that glomerular filtration rate (GFR) in these birds would not be unusually high in spite of large ingested water loads. When feeding on dilute sucrose solutions, sunbirds ingested between 4 and 6 times their body mass in nectar per day, yet they were able to compensate for varying nectar energy density and increased thermoregulatory energy demands with no apparent difficulty. GFR was lower than predicted (1976.22±91.95 µl h-1), and was not exceptionally sensitive to water loading. Plasma glucose concentrations were high, and varied 1.8-fold between fasted (16.08± 0.75 mmol l-1) and fed (28.18±0.68 mmol l-1) sunbirds, but because GFR was low, glucose filtered load also remained relatively low. Essentially the entire glucose filtered load (98%) was recovered by the kidney. Renal fractional water reabsorption (FWR) decreased from 0.98 to 0.64 with increasing water intake. The ability of Palestine sunbirds to reduce the absorption of ingested water in the gastrointestinal tract may resolve the potential conflict between filtering a large excess of absorbed water in the kidney and simultaneously retaining filtered metabolites.Todd J. McWhorter, Carlos Martínez del Rio, Berry Pinshow and Lizanne Roxburg

    (Poly)phenolic content and profile and antioxidant capacity of whole-grain cookies are better estimated by simulated digestion than chemical extraction

    Get PDF
    It is widely recognized that the biological effects of phytochemicals cannot be attributed to the native compounds present in foods but rather to their metabolites endogenously released after intake. Bioavailability depends on bioaccessibility, which is the amount of the food constituent that is released from the matrix in the gastrointestinal tract. The use of chemical extraction to evaluate the content and profile of phytochemicals does not mirror the physiological situation in vivo, and their bioaccessibility should be considered while assessing their nutritional significance in human health. The current study was designed to compare the (poly)phenolic profile and content and antioxidant capacity of whole-grain (WG) cookies using chemical extraction and a more physiological approach based on simulated digestion. Three types of organic WG cookies (made with durum, Italian khorasan, or KAMUT\uae khorasan wheat) were considered, either fermented by Saccharomyces Cerevisiae or sourdough. Although the flour type and the fermentation process influenced the release of phytochemicals from the cookie matrix, in almost all samples, the simulated digestion appeared the most efficient procedure. Our results indicate that the use of chemical extraction for evaluation of the phytochemicals content and antioxidant capacity of food could lead to underestimation and underline the need for more physiological extraction methods

    Wastewater valorization: Practice around the world at pilot-and full-scale

    Get PDF
    LA/P/0140/2020Over the last few years, wastewater treatment plants (WWTPs) have been rebranded as water resource recovery facilities (WRRFs), which recognize the resource recovery potential that exists in wastewater streams. WRRFs contribute to a circular economy by not only producing clean water but by recovering valuable resources such as nutrients, energy, and other bio-based materials. To this aim, huge efforts in technological progress have been made to valorize sewage and sewage sludge, transforming them into valuable resources. This review summarizes some of the widely used and effective strategies applied at pilot-and full-scale settings in order to valorize the wastewater treatment process. An overview of the different technologies applied in the water and sludge line is presented, covering a broad range of resources, i.e., water, biomass, energy, nutrients, volatile fatty acids (VFA), polyhydroxyalkanoates (PHA), and exopolymeric substances (EPS). Moreover, guidelines and regulations around the world related to water reuse and resource valorization are reviewed.publishersversionpublishe

    Gross morphometry of the heart of the Common marmoset

    Get PDF
      The Callithrix jacchus is a Brazilian endemic species that has been widely used asan experimental model in biomedical research. Anatomical data are necessary to support experimental studies with this species. Eleven hearts of C. jacchus from the German Primate Centre (DPZ) have been studied in order to characterize their gross morphometry and compare them with other animal models and human. Biometric data were also obtained. The mean values for morphometry of the hearts did not show any significant difference between male and female. The relative heart weight was similar to human, bovine and equine species. Considering those aspects, the C. jacchus could be used as non-human primate experimental modelfor biomedical studies on heart.
    corecore