6,615 research outputs found

    Are Dutch Skylarks partial migrants? Ring recovery data and radio-telemetry suggest local coexistence of contrasting migration strategies

    Get PDF
    In recent years, Skylarks Alauda arvensis have undergone dramatic population declines in many European countries. Evidence exists for deteriorating conditions during the breeding season, but little is known about the situation during the rest of the annual cycle. Here we use two approaches to test if the Dutch breeding population of Skylarks consists of resident and/or migratory individuals. First, we present an analysis of ring recoveries from the Dutch Ringing Centre "Vogeltrekstation". Out of 25 recoveries, 12 Skylarks were resident in winter, 10 migrated and three were classified as probable migrants. Resident birds were accompanied during winter by birds from northern and eastern Europe. Very limited natal and breeding dispersal recorded in the same dataset suggests that our results were not influenced by long dispersal distances. Next, we compared these results to a local radio-telemetry study in the northern Netherlands. During two different years we equipped a total of 27 Skylarks from a breeding population with radio-transmitters and followed them during the subsequent winter. Four birds were found to winter locally. Out of 23 individuals that we did not find in winter, 14 returned in the following breeding season to the study area, all with a working transmitter, suggesting that they wintered outside our study area. Two ring recoveries of birds from the same study population indeed showed migration to south-west Europe. Based on these two lines of evidence, we conclude local coexistence of a resident and a migrant strategy in Dutch Skylarks. The findings of our study are important for the planning of conservation efforts, as we can only protect this rapidly declining species when we know their behaviour and whereabouts throughout the entire annual cycle

    Renormalization of the quasiparticle hopping integrals by spin interactions in layered copper oxides

    Full text link
    Holes doped within the square CuO2 network specific to the cuprate superconducting materials have oxygen 2p character. We investigate the basic properties of such oxygen holes by wavefunction-based quantum chemical calculations on large embedded clusters. We find that a 2p hole induces ferromagnetic correlations among the nearest-neighbor Cu 3d spins. When moving through the antiferromagnetic background the hole must bring along this spin polarization cloud at nearby Cu sites, which gives rise to a substantial reduction of the effective hopping parameters. Such interactions can explain the relatively low values inferred for the effective hoppings by fitting the angle-resolved photoemission data. The effect of the background antiferromagnetic couplings of renormalizing the effective nearest-neighbor hopping is also confirmed by density-matrix renormalization-group model Hamiltonian calculations for chains and ladders of CuO4 plaquettes

    Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability

    No full text
    The assessment of corticospinal excitability by means of transcranial magnetic stimulation-induced motor evoked potentials is an established diagnostic tool in neurophysiology and a widely used procedure in fundamental brain research. However, concern about low reliability of these measures has grown recently. One possible cause of high variability of MEPs under identical acquisition conditions could be the influence of oscillatory neuronal activity on corticospinal excitability. Based on research showing that transcranial alternating current stimulation can entrain neuronal oscillations we here test whether alpha or beta frequency tACS can influence corticospinal excitability in a phase-dependent manner. We applied tACS at individually calibrated alpha- and beta-band oscillation frequencies, or we applied sham tACS. Simultaneous single TMS pulses time locked to eight equidistant phases of the ongoing tACS signal evoked MEPs. To evaluate offline effects of stimulation frequency, MEP amplitudes were measured before and after tACS. To evaluate whether tACS influences MEP amplitude, we fitted one-cycle sinusoids to the average MEPs elicited at the different phase conditions of each tACS frequency. We found no frequency-specific offline effects of tACS. However, beta-frequency tACS modulation of MEPs was phase-dependent. Post hoc analyses suggested that this effect was specific to participants with low (<19 Hz) intrinsic beta frequency. In conclusion, by showing that beta tACS influences MEP amplitude in a phase-dependent manner, our results support a potential role attributed to neuronal oscillations in regulating corticospinal excitability. Moreover, our findings may be useful for the development of TMS protocols that improve the reliability of MEPs as a meaningful tool for research applications or for clinical monitoring and diagnosis. (C) 2018 Elsevier Ltd. All rights reserved

    A Musical instrument in MEMS

    Get PDF
    In this work we describe a MEMS instrument that resonates at audible frequencies, and with which music can be made. The sounds are generated by mechanical resonators and capacitive displacement sensors. Damping by air scales unfavourably for generating audible frequencies with small devices. Therefore a vacuum of 1.5 mbar is used to increase the quality factor and consequently the duration of the sounds to around 0.25 s. The instrument will be demonstrated during the MME 2010 conference opening, in a musical composition especially made for the occasion

    Electrophysiology of glioma: a Rho GTPase-activating protein reduces tumor growth and spares neuron structure and function

    Get PDF
    Background. Glioblastomas are the most aggressive type of brain tumor. A successful treatment should aim at halting tumor growth and protecting neuronal cells to prevent functional deficits and cognitive deterioration. Here, we exploited a Rho GTPase-activating bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1), to interfere with glioma cell growth in vitro and vivo. We also investigated whether this toxin spares neuron structure and function in peritumoral areas. Methods. We performed a microarray transcriptomic and in-depth proteomic analysis to characterize the molecular changes triggered by CNF1 in glioma cells. We also examined tumor cell senescence and growth in vehicle-and CNF1-treated glioma-bearing mice. Electrophysiological and morphological techniques were used to investigate neuronal alterations in peritumoral cortical areas. Results. Administration of CNF1 triggered molecular and morphological hallmarks of senescence in mouse and human glioma cells in vitro. CNF1 treatment in vivo induced glioma cell senescence and potently reduced tumor volumes. In peritumoral areas of glioma-bearing mice, neurons showed a shrunken dendritic arbor and severe functional alterations such as increased spontaneous activity and reduced visual responsiveness. CNF1 treatment enhanced dendritic length and improved several physiological properties of pyramidal neurons, demonstrating functional preservation of the cortical network. Conclusions. Our findings demonstrate that CNF1 reduces glioma volume while at the same time maintaining the physiological and structural properties of peritumoral neurons. These data indicate a promising strategy for the development of more effective antiglioma therapies

    In-flight degradation correction of SCIAMACHY UV reflectances and Absorbing Aerosol Index

    Get PDF
    In this paper we study the close relationship between the radiometric calibration of a satellite instrument and the Absorbing Aerosol Index (AAI) derived from the observed Earth reflectance. Instrument degradation of the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) instrument in the ultraviolet wavelength range is examined by analyzing time series of global means of the AAI, making use of the experience that the global mean should be more or less constant when instrument degradation is absent. The analysis reveals the magnitude of the (scan angle dependent) instrument degradation of SCIAMACHY and also shows that currently available correction techniques are not able to correct the instrument degradation in a sufficient manner. We therefore develop and introduce a new method for degradation correction, which is based on the analysis of the time evolution of the global mean reflectance. Seasonal variations in the global mean reflectance, which mainly result from seasonal variations in scattering geometry and global cloud coverage, are separated from the time series in order to isolate the instrument degradation. Finally, we apply the derived reflectance correction factors to the SCIAMACHY reflectances and calculate the AAI to find that the effects of instrument degradation are reduced to within the 0.1 index point level. The derived AAI is also compared with the AAI based on other correction techniques. The proposed in-flight reflectance degradation correction method performs best in all aspects. © 2012 by the American Geophysical Union
    • 

    corecore