58 research outputs found

    Lower NPAS3 expression during the later stages of abnormal lung development in rat congenital diaphragmatic hernia

    Get PDF
    Purpose Congenital diaphragmatic hernia (CDH) is characterized by a developmental defect in the diaphragm, pulmonary hypoplasia and pulmonary hypertension. NPAS3 is a PAS domain transcription factor regulating Drosophila tracheogenesis. NPAS3 null mice develop pulmonary hypoplasia in utero and die after birth due to respiratory failure. We aimed to evaluate NPAS3 expres- sion during normal and abnormal lung development due to CDH. Methods CDH was induced by administering 100 mg/ml nitrofen to time-pregnant dams on embryonic day (E) 9 of gestation. Lungs were isolated on E15, E18 and E21 and NPAS3 localization was determined by immunohisto- chemistry and quantified using Western blotting. Results We found that only E21 hypoplastic CDH lungs have reduced expression of NPAS3 in the terminal sac- cules. Western blotting confirmed the down-regulation of NPAS3 protein in the nitrofen-induced hypoplastic lungs. Conclusions We demonstrate for the first time that ni- trofen-induced hypoplastic CDH lungs have reduced NPAS3 expression in the terminal saccules during the later stages of abnormal lung development. Our findings suggest that NPAS3 is associated with pulmonary hypoplasia in CDH.Supported by the Children’s Hospital Research Institute of Manitoba; RK is the recipient of a Career Enhancement Award from the Canadian Child Health Clinician Scientist Program and a New Investigator Salary Award from the Canadian Institutes of Health Research, Manitoba Lung Association and the Children’s Hospital Research Institute

    Switchable Gene Expression in Escherichia coli Using a Miniaturized Photobioreactor

    Get PDF
    We present a light-switchable gene expression system for both inducible and switchable control of gene expression at a single cell level in Escherichia coli using a previously constructed light-sensing system. The lambda cl repressor gene with an LVA degradation tag was expressed under the control of the ompC promoter on the chromosome. The green fluorescent protein (GFP) gene fused to a lambda repressor-repressible promoter was used as a reporter. This light-switchable system allows rapid and reversible induction or repression of expression of the target gene at any desired time. This system also ensures homogenous expression across the entire cell population. We also report the design of a miniaturized photobioreactor to be used in combination with the light-switchable gene expression system. The miniaturized photobioreactor helps to reduce unintended induction of the light receptor due to environmental disturbances and allows precise control over the duration of induction. This system would be a good tool for switchable, homogenous, strong, and highly regulatable expression of target genes over a wide range of induction times. Hence, it could be applied to study gene function, optimize metabolic pathways, and control biological systems both spatially and temporally.open0

    Study of e+eppˉe^+e^- \rightarrow p\bar{p} in the vicinity of ψ(3770)\psi(3770)

    Full text link
    Using 2917 pb1\rm{pb}^{-1} of data accumulated at 3.773~GeV\rm{GeV}, 44.5~pb1\rm{pb}^{-1} of data accumulated at 3.65~GeV\rm{GeV} and data accumulated during a ψ(3770)\psi(3770) line-shape scan with the BESIII detector, the reaction e+eppˉe^+e^-\rightarrow p\bar{p} is studied considering a possible interference between resonant and continuum amplitudes. The cross section of e+eψ(3770)ppˉe^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}, σ(e+eψ(3770)ppˉ)\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}), is found to have two solutions, determined to be (0.059±0.032±0.0120.059\pm0.032\pm0.012) pb with the phase angle ϕ=(255.8±37.9±4.8)\phi = (255.8\pm37.9\pm4.8)^\circ (<<0.11 pb at the 90% confidence level), or σ(e+eψ(3770)ppˉ)=(2.57±0.12±0.12\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}) = (2.57\pm0.12\pm0.12) pb with ϕ=(266.9±6.1±0.9)\phi = (266.9\pm6.1\pm0.9)^\circ both of which agree with a destructive interference. Using the obtained cross section of ψ(3770)ppˉ\psi(3770)\rightarrow p\bar{p}, the cross section of ppˉψ(3770)p\bar{p}\rightarrow \psi(3770), which is useful information for the future PANDA experiment, is estimated to be either (9.8±5.79.8\pm5.7) nb (<17.2<17.2 nb at 90% C.L.) or (425.6±42.9)(425.6\pm42.9) nb
    corecore