5,180 research outputs found

    A convenient tandem one-pot synthesis of donor-acceptor-type triphenylene 2,3-dicarboxylic esters from diarylacetylene

    Get PDF
    A tandem one-pot method for the direct synthesis of polysubstituted triphenylene 2,3-dicarboxylic esters with different substitution patterns was developed by enyne metathesis of diarylacetylene, followed by Diels–Alder, aromatization and a cyclization cascade

    The x ray reflectivity of the AXAF VETA-I optics

    Get PDF
    The x-ray reflectivity of the VETA-I optic, the outermost shell of the AXAF x-ray telescope, with a bare Zerodur surface, is measured and compared with theoretical predictions. Measurements made at energies of 0.28, 0.9, 1.5, 2.1, and 2.3 keV are compared with predictions based on ray trace calculations. The data were obtained at the x-ray calibrations facility at Marshall Space Flight Center with an electron impact x-ray source located 528 m from the grazing incidence mirror. The source used photoelectric absorption filters to eliminate bremsstrahlung continuum. The mirror has a diameter of 1.2 m and a focal length of 10 m. The incident and reflected x-ray flux are detected using two proportional counters, one located in the incident beam of x-rays at the entrance aperture of the VETA-I, and the other in the focal plane behind an aperture of variable size. Results on the variation of the reflectivity with energy as well as the absolute value of the reflectivity are presented. We also present a synchrotron reflectivity measurement with high energy resolution over the range 0.26 to 1.8 keV on a flat Zerodur sample, done at NSLS. We present evidence for contamination of the flat by a thin layer of carbon on the surface, and the possibility of alteration of the surface composition of the VETA-I mirror perhaps by the polishing technique. The overall agreement between the measured and calculated effective area of VETA-I is between 2.6 percent and 10 percent, depending on which model for the surface composition is adopted. Measurements at individual energies deviate from the best-fitting calculation to 0.3 to 0.8 percent, averaging 0.6 percent at energies below the high energy cutoff of the mirror reflectivity, and are as high as 20.7 percent at the cutoff. We also discuss the approach to the final preflight calibration of the full AXAF flight mirror

    Improved taxol production in Nodulisporium sylviforme derived from inactivated protoplast fusion

    Get PDF
    Inactivated protoplast fusion by UV irradiation and UV+LiCl mutation was conducted using Nodulisporium sylviforme strain UV40-19 and UL50-6 to breed a high taxol-producing fungus. Qualitative and quantitative analysis of taxol production was confirmed using thin-layer chromatography, high performance liquid chromatography and mass spectrometry. The protoplasts of UV40-19 and UL50-6 were fully inactivated by heating at 54°C for 5 min and by UV irradiation (30 w UV light and vertical distance 30 cm) for 85 s. The highest fusion rate (14.31 ± 1.13%) between UV40-19 and UL50-6 was obtained under the conditions of 35% PEG, 90 s fusion time and the addition of 0.01 mol/l CaCl2. One high taxol production strain HDF-68 was obtained. The taxol production was up to 468.62 ± 37.49 μg/l, which was increased by 24.51 and 19.35% compared with the parental strain UV40-19 and UL50-6, respectively. This study provided a good basis for the application of this technique to the breeding of the strains with high taxol output.Key words: Taxol, endophytic fungi, protoplast preparation, protoplast fusion

    Accurate, precise modeling of cell proliferation kinetics from time-lapse imaging and automated image analysis of agar yeast culture arrays

    Get PDF
    BACKGROUND: Genome-wide mutant strain collections have increased demand for high throughput cellular phenotyping (HTCP). For example, investigators use HTCP to investigate interactions between gene deletion mutations and additional chemical or genetic perturbations by assessing differences in cell proliferation among the collection of 5000 S. cerevisiae gene deletion strains. Such studies have thus far been predominantly qualitative, using agar cell arrays to subjectively score growth differences. Quantitative systems level analysis of gene interactions would be enabled by more precise HTCP methods, such as kinetic analysis of cell proliferation in liquid culture by optical density. However, requirements for processing liquid cultures make them relatively cumbersome and low throughput compared to agar. To improve HTCP performance and advance capabilities for quantifying interactions, YeastXtract software was developed for automated analysis of cell array images. RESULTS: YeastXtract software was developed for kinetic growth curve analysis of spotted agar cultures. The accuracy and precision for image analysis of agar culture arrays was comparable to OD measurements of liquid cultures. Using YeastXtract, image intensity vs. biomass of spot cultures was linearly correlated over two orders of magnitude. Thus cell proliferation could be measured over about seven generations, including four to five generations of relatively constant exponential phase growth. Spot area normalization reduced the variation in measurements of total growth efficiency. A growth model, based on the logistic function, increased precision and accuracy of maximum specific rate measurements, compared to empirical methods. The logistic function model was also more robust against data sparseness, meaning that less data was required to obtain accurate, precise, quantitative growth phenotypes. CONCLUSION: Microbial cultures spotted onto agar media are widely used for genotype-phenotype analysis, however quantitative HTCP methods capable of measuring kinetic growth rates have not been available previously. YeastXtract provides objective, automated, quantitative, image analysis of agar cell culture arrays. Fitting the resulting data to a logistic equation-based growth model yields robust, accurate growth rate information. These methods allow the incorporation of imaging and automated image analysis of cell arrays, grown on solid agar media, into HTCP-driven experimental approaches, such as global, quantitative analysis of gene interaction networks

    Imidacloprid adsorption by soils treated with humic substances under different pH and temperature conditions

    Get PDF
    The mobility of a pesticide in soil is determined by the extent and strength of sorption, which is influenced by either the existing soil humus or exogenous humic substances. Exogenous humic acids (HAs) were added to soil to enhance the amount of soil organic carbon (SOC) by 2.5, 5.0 and 10.0 g kg-1. Imidacloprid sorption of the treated soils was studied at three pH levels (4.5, 6.0 and 7.5) and two temperatures (15 and 25°C). Soil imidacloprid adsorption was related to pH and the type and quantity ofadded HAs. Humic acid (HA) and fulvic acid (FA) derived from peat had different effects on adsorption of imidacloprid. When soil solution pH was 6, the amount of adsorbed imidacloprid was enhanced with increasing exogenous HA. On the contrary, the amount of adsorbed imidacloprid decreased with increasing quantity of exogenous FA. Adsorption of imidacloprid in the FA treatment at 5.0 and 10.0 g kg-1 was lower than the controls (untreated soil or treatment with HAs at 0 g kg-1) when the soil solution pH was 6.0. However adsorption of imidacloprid in the HA treatment was higher than the controls. Imidacloprid adsorption was usually higher under lower pH and/or lower temperature at samecondition. Imidacloprid sorption fitted the Freundlich isotherm, indicating that exogenous humic substances influenced adsorption of imidacloprid, which in turn was affected by environmental conditions such as pH and temperature. Thus, exogenous HA can be used to control the mobility of soil pesticide under appropriate conditions to decrease pesticide pollution diffusion and probably increase effectiveness of pesticides

    Quasienergy spectra of a charged particle in planar honeycomb lattices

    Full text link
    The low energy spectrum of a particle in planar honeycomb lattices is conical, which leads to the unusual electronic properties of graphene. In this letter we calculate the quasienergy spectra of a charged particle in honeycomb lattices driven by a strong AC field, which is of fundamental importance for its time-dependent dynamics. We find that depending on the amplitude, direction and frequency of external field, many interesting phenomena may occur, including band collapse, renormalization of velocity of ``light'', gap opening etc.. Under suitable conditions, with increasing the magnitude of the AC field, a series of phase transitions from gapless phases to gapped phases appear alternatively. At the same time, the Dirac points may disappear or change to a line. We suggest possible realization of the system in Honeycomb optical lattices.Comment: 4+ pages, 5 figure

    Coulomb-enhanced dynamic localization and Bell state generation in coupled quantum dots

    Full text link
    We investigate the dynamics of two interacting electrons in coupled quantum dots driven by an AC field. We find that the two electrons can be trapped in one of the dots by the AC field, in spite of the strong Coulomb repulsion. In particular, we find that the interaction may enhance the localization effect. We also demonstrate the field excitation procedure to generate the maximally entangled Bell states. The generation time is determined by both analytic and numerical solutions of the time dependent Schrodinger equation.Comment: 12 pages, 5 figure

    Dynamics of spin-2 Bose condensate driven by external magnetic fields

    Get PDF
    Dynamic response of the F=2 spinor Bose-Einstein condensate (BEC) under the influence of external magnetic fields is studied. A general formula is given for the oscillation period to describe population transfer from the initial polar state to other spin states. We show that when the frequency and the reduced amplitude of the longitudinal magnetic field are related in a specific manner, the population of the initial spin-0 state will be dynamically localized during time evolution. The effects of external noise and nonlinear spin exchange interaction on the dynamics of the spinor BEC are studied. We show that while the external noise may eventually destroy the Rabi oscillations and dynamic spin localization, these coherent phenomena are robust against the nonlinear atomic interaction.Comment: 16 pages, 7 figures. accepted by Phys. Rev.
    corecore