1,980 research outputs found

    3D bioprinting of gellan gum-based hydrogels tethered with laminin-derived peptides for improved cellular behavior

    Get PDF
    The treatment of skeletal muscle defects is still a topic of noteworthy concern since surgical intervention is not capable of recovering muscle function. Herein, we propose myoblasts laden in laminin-inspired biofunctionalized gellan gum hydrogels as promising tissue-engineered skeletal muscle surrogates. Gellan gum-based hydrogels were developed by combining native gellan gum (GG) and GG tethered with laminin-derived peptides (CIKVAVS (V), KNRLTIELEVRTC (T) or RKRLQVQLSIRTC (Q)), using different polymer content (0.75%â 1.875%). Hydrogels were characterized in terms of compressive modulus, molecules trafficking, and C2C12 adhesion. Hydrogels with higher polymeric content (1.125%â 1.875%) showed higher stiffness whereas hydrogels with lower polymer content (0.75%â 1.125%) showed higher fluorescein isothiocyanate-dextran molecules diffusion. Cell spreading was achieved regardless of the laminin-derived peptide but preferred in hydrogels with higher polymer content (1.125%â 1.875%). Taken together, hydrogels with 1.125% of polymer content were selected for printability analysis. GG-based inks showed a non-newtonian, shear-thinning, and thixotropic behavior suitable for printing. Accordingly, all inks were printable, but inks tethered with T and Q peptides presented some signs of clogging. Cell viability was affected after printing but increased after 7â days of culture. After 7â days, cells were spreading but not showing significant signs of cellâ cell communications. Therefore, cell density was increased, thus, myocytes loaded in V-tethered GG-based inks showed higher cellâ cell communication, spreading morphology, and alignment 7, 14â days post-printing. Overall, myoblasts laden in laminin-inspired biofunctionalized GG-based hydrogels are a promising skeletal muscle surrogate with the potential to be used as in vitro model or explored for further in vivo applications.CEEC Individual, Grant/Award Number: 2020.01541.CEECIND/CP1600/CT0024; Fundacao para a Ciencia e a Tecnologia, Grant/Award Number: PD/BD/128090/201

    Micropatterned silk-fibroin/eumelanin composite films for bioelectronic applications

    Get PDF
    There has been growing interest in the use of natural bionanomaterials and nanostructured systems for diverse biomedical applications. Such materials can confer unique functional properties as well as address concerns pertaining to sustainability in production. In this work, we propose the biofabrication of micropatterned silk fibroin/eumelanin composite thin films to be used in electroactive and bioactive applications in bioelectronics and biomedical engineering. Eumelanin is the most common form of melanin, naturally derived from the ink of cuttlefish, having antioxidant and electroactive properties. Another natural biomaterial, the protein silk fibroin, is modified with photoreactive chemical groups, which allows the formation of electroactive eumelanin thin films with different microstructures. The silk fibroin/eumelanin composites are fabricated to obtain thin films as well as electroactive microstructures using UV curing. Here, we report for the first time the preparation, characterization, and physical, electrochemical, and biological properties of these natural silk fibroin/eumelanin composite films. Higher concentrations of eumelanin incorporated into the films exhibit a higher charge storage capacity and good electroactivity even after 100 redox cycles. In addition, the microscale structure and the cellular activity of the fibroin/eumelanin films are assessed for understanding of the biological properties of the composite. The developed micropatterned fibroin/eumelanin films can be applied as natural electroactive substrates for bioapplications (e.g., bioelectronics, sensing, and theranostics) because of their biocompatible properties.The authors acknowledge the FRONTHERA project (Frontiers of technology for theranostics of cancer, metabolic and neurodegenerative diseases) n degrees NORTE-01-0145-FEDER0000232, the European Union Framework Programme for Research and Innovation Horizon 2020 under grant agreement n degrees 668983. FoReCaST (Forefront Research in 3D Disease Cancer Models as in vitro Screening Technologies), and FCT grants POCI-01-0145-FEDER-031590, PD/BD/150546/2019 and PTDC/BTM-ORG/28168/2017. VKY acknowledges support from the National Science Foundation (CBET1704435)

    Fluctuation-driven capacity distribution in complex networks

    Full text link
    Maximizing robustness and minimizing cost are common objectives in the design of infrastructure networks. However, most infrastructure networks evolve and operate in a highly decentralized fashion, which may significantly impact the allocation of resources across the system. Here, we investigate this question by focusing on the relation between capacity and load in different types of real-world communication and transportation networks. We find strong empirical evidence that the actual capacity of the network elements tends to be similar to the maximum available capacity, if the cost is not strongly constraining. As more weight is given to the cost, however, the capacity approaches the load nonlinearly. In particular, all systems analyzed show larger unoccupied portions of the capacities on network elements subjected to smaller loads, which is in sharp contrast with the assumptions involved in (linear) models proposed in previous theoretical studies. We describe the observed behavior of the capacity-load relation as a function of the relative importance of the cost by using a model that optimizes capacities to cope with network traffic fluctuations. These results suggest that infrastructure systems have evolved under pressure to minimize local failures, but not necessarily global failures that can be caused by the spread of local damage through cascading processes

    Expression of TLR2, TLR4, and TLR9 in dermatomyositis and polymyositis

    Get PDF
    The aim of this study was to investigate the expressions of Toll-like receptor (TLR) 2, TLR4, TLR9, and their correlations with the expression of cytokines that are associated with activation of CD4+ T cells and inflammation including interferon γ (IFNγ), interleukin 4 (IL4), interleukin 17 (IL17), and tumor necrosis factor α (TNFα) in muscle tissues of patients with dermatomyositis (DM) and polymyositis (PM). The expressions of TLR2, TLR4, TLR9, IFNγ, IL4, IL17, and TNFα were measured by real-time reverse transcription–polymerase chain reaction in muscle tissues from 14 patients with DM and PM (nine patients with DM, five patients with PM) and three controls. The expressions of TLR2, TLR4, and TLR9 were also localized with immunohistochemistry. The expression levels of TLR2, TLR4, TLR9, IFNγ, IL4, IL17, and TNFα were significantly high in patients with DM and PM compared with those in the controls, and the expression levels of TLR4 and TLR9 had significant positive correlations with the expressions of IFNγ, IL4, IL17, and TNFα. Immunohistochemistry showed that TLR2, TLR4, and TLR9 were expressed by infiltrating cells of perimysium in DM, whereas they were expressed by infiltrating cells of endomysium in PM. These results suggest that the involvement of TLR4 and TLR9 in immunopathogenesis of DM and PM might be connected with activation of CD4+ T cells

    Harnessing AI to unmask Copenhagen's invisible air pollutants: A study on three ultrafine particle metrics

    Get PDF
    Ultrafine particles (UFPs) are airborne particles with a diameter of less than 100 nm. They are emitted from various sources, such as traffic, combustion, and industrial processes, and can have adverse effects on human health. Long-term mean ambient average particle size (APS) in the UFP range varies over space within cities, with locations near UFP sources having typically smaller APS. Spatial models for lung deposited surface area (LDSA) within urban areas are limited and currently there is no model for APS in any European city. We collected particle number concentration (PNC), LDSA, and APS data over one-year monitoring campaign from May 2021 to May 2022 across 27 locations and estimated annual mean in Copenhagen, Denmark, and obtained additionally annual mean PNC data from 6 state-owned continuous monitors. We developed 94 predictor variables, and machine learning models (random forest and bagged tree) were developed for PNC, LDSA, and APS. The annual mean PNC, LDSA, and APS were, respectively, 5523 pt/cm 3, 12.0 μm 2/cm 3, and 46.1 nm. The final R 2 values by random forest (RF) model were 0.93 for PNC, 0.88 for LDSA, and 0.85 for APS. The 10-fold, repeated 10-times cross-validation R 2 values were 0.65, 0.67, and 0.60 for PNC, LDSA, and APS, respectively. The root mean square error for final RF models were 296 pt/cm 3, 0.48 μm 2/cm 3, and 1.60 nm for PNC, LDSA, and APS, respectively. Traffic-related variables, such as length of major roads within buffers 100-150 m and distance to streets with various speed limits were amongst the highly-ranked predictors for our models. Overall, our ML models achieved high R 2 values and low errors, providing insights into UFP exposure in a European city where average PNC is quite low. These hyperlocal predictions can be used to study health effects of UFPs in the Danish Capital

    Clinical Characteristics of a Nationwide Hospital-based Registry of Mild-to-Moderate Alzheimer's Disease Patients in Korea: A CREDOS (Clinical Research Center for Dementia of South Korea) Study

    Get PDF
    With rapid population aging, the socioeconomic burden caused by dementia care is snowballing. Although a few community-based studies of Alzheimer's disease (AD) have been performed in Korea, there has never been a nationwide hospital-based study thereof. We aimed to identify the demographics and clinical characteristics of mild-to-moderate AD patients from the Clinical Research Center for Dementia of Korea (CREDOS) registry. A total of 1,786 patients were consecutively included from September 2005 to June 2010. Each patient underwent comprehensive neurological examination, interview for caregivers, laboratory investigations, neuropsychological tests, and brain MRI. The mean age was 74.0 yr and the female percentage 67.0%. The mean period of education was 7.1 yr and the frequency of early-onset AD (< 65 yr old) was 18.8%. Among the vascular risk factors, hypertension (48.9%) and diabetes mellitus (22.3%) were the most frequent. The mean score of the Korean version of Mini-Mental State Examination (K-MMSE) was 19.2 and the mean sum of box scores of Clinical Dementia Rating (CDR-SB) 5.1. Based on the well-structured, nationwide, and hospital-based registry, this study provides the unique clinical characteristics of AD and emphasizes the importance of vascular factors in AD in Korea

    Loss of the Promyelocytic Leukemia Protein in Gastric Cancer: Implications for IP-10 Expression and Tumor-Infiltrating Lymphocytes

    Get PDF
    Gastric cancer is one of the most common causes of cancer-related mortality worldwide. Expression of the tumor suppressor, promyelocytic leukemia (PML) protein, is reduced or abolished in gastric carcinomas, in association with an increased level of lymphatic invasion, development of higher pTNM staging, and unfavorable prognosis. Herein, we investigated the relationship between the extent of tumor-infiltrating lymphocytes and the status of PML protein expression in advanced gastric carcinoma. We observed higher numbers of infiltrating T-cells in gastric carcinoma tissues in which PML expression was reduced or abolished, compared to tissues positive for PML. The extent of T-cell migration toward culture supernatants obtained from interferon-gamma (IFN-γ-stimulated gastric carcinoma cell lines was additionally affected by expression of PML in vitro. Interferon-gamma-inducible protein 10 (IP-10/CXCL10) expression was increased in gastric carcinoma tissues displaying reduced PML levels. Moreover, both Pml knockout and knockdown cells displayed enhanced IP-10 mRNA and protein expression in the presence of IFN-γ. PML knockdown increased IFN-γ-mediated Signal Transducer and Activator of Transcription-1 (STAT-1) binding to the IP-10 promoter, resulting in elevated transcription of the IP-10 gene. Conversely, PML IV protein expression suppressed IP-10 promoter activation. Based on these results, we propose that loss of PML protein expression in gastric cancer cells contributes to increased IP-10 transcription via enhancement of STAT-1 activity, which, in turn, promotes lymphocyte trafficking within tumor regions

    Suppression of Lung Tumorigenesis by Leucine Zipper/EF Hand–Containing Transmembrane-1

    Get PDF
    Leucine zipper/EF hand-containing transmembrane-1 (LETM1) encodes for the human homologue of yeast Mdm38p, which is a mitochondria-shaping protein of unclear function. However, a previous study demonstrated that LETM1 served as an anchor protein for complex formation between mitochondria and ribosome, and regulated mitochondrial biogenesis.Therefore, we examine the possibility that LETM1 may function to regulate mitochondria and lung tumor growth. In this study, we addressed this question by studying in the effect of adenovirus-mediated LETM1 in the lung cancer cell and lung cancer model mice. To investigate the effects of adenovirus-LETM1 in vitro, we infected with adenovirus-LETM1 in A549 cells. Additionally, in vivo effects of LETM1 were evaluated on K-ras(LA1) mice, human non-small cell lung cancer model mice, by delivering the LETM1 via aerosol through nose-only inhalation system. The effects of LETM1 on lung cancer growth and AMPK related signals were evaluated. Adenovirus-mediated overexpression of LETM1 could induce destruction of mitochondria of lung cancer cells through depleting ATP and AMPK activation. Furthermore, adenoviral-LETM1 also altered Akt signaling and inhibited the cell cycle while facilitating apoptosis. Theses results demonstrated that adenovirus-LETM1 suppressed lung cancer cell growth in vitro and in vivo.Adenovirus-mediated LETM1 may provide a useful target for designing lung tumor prevention and treatment

    Integrated Expression Profiling and Genome-Wide Analysis of ChREBP Targets Reveals the Dual Role for ChREBP in Glucose-Regulated Gene Expression

    Get PDF
    The carbohydrate response element binding protein (ChREBP), a basic helix-loop-helix/leucine zipper transcription factor, plays a critical role in the control of lipogenesis in the liver. To identify the direct targets of ChREBP on a genome-wide scale and provide more insight into the mechanism by which ChREBP regulates glucose-responsive gene expression, we performed chromatin immunoprecipitation-sequencing and gene expression analysis. We identified 1153 ChREBP binding sites and 783 target genes using the chromatin from HepG2, a human hepatocellular carcinoma cell line. A motif search revealed a refined consensus sequence (CABGTG-nnCnG-nGnSTG) to better represent critical elements of a functional ChREBP binding sequence. Gene ontology analysis shows that ChREBP target genes are particularly associated with lipid, fatty acid and steroid metabolism. In addition, other functional gene clusters related to transport, development and cell motility are significantly enriched. Gene set enrichment analysis reveals that ChREBP target genes are highly correlated with genes regulated by high glucose, providing a functional relevance to the genome-wide binding study. Furthermore, we have demonstrated that ChREBP may function as a transcriptional repressor as well as an activator

    Prognostic impact of clinicopathologic parameters in stage II/III breast cancer treated with neoadjuvant docetaxel and doxorubicin chemotherapy: paradoxical features of the triple negative breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prognostic factors in locally advanced breast cancer treated with neoadjuvant chemotherapy differ from those of early breast cancer. The purpose of this study was to identify the clinical significance of potential predictive and prognostic factors in breast cancer patients treated by neoadjuvant chemotherapy.</p> <p>Methods</p> <p>A total of 145 stage II and III breast cancer patients received neoadjuvant docetaxel/doxorubicin chemotherapy were enrolled in this study. We examined the clinical and biological factors (ER, PR, p53, c-erbB2, bcl-2, and Ki-67) by immunohistochemistry. We analyzed clinical outcome and their correlation with clinicopathologic parameters.</p> <p>Results</p> <p>Among the clinicopathologic parameters investigated, none of the marker was correlated with response rate (RR) except triple negative phenotype. Patients with triple negative phenotype showed higher RR (83.0% in triple negative <it>vs</it>. 62.2% in non-triple negative, <it>p </it>= 0.012) and pathologic complete RR (17.0% in triple negative <it>vs</it>. 3.1% in non-triple negative, <it>p </it>= 0.005). However, relapse free survival (RFS) and overall survival (OS) were significantly shorter in triple negative breast cancer patients (<it>p </it>< 0.001, <it>p </it>= 0.021, respectively). Low histologic grade, positive hormone receptors, positive bcl-2 and low level of Ki-67 were associated with prolonged RFS. In addition, positive ER and positive bcl-2 were associated with prolonged OS. In our homogeneous patient population, initial clinical stage reflects RFS and OS more precisely than pathologic stage. In multivariate analysis, initial clinical stage was the only significant independent prognostic factor to impact on OS (hazard ratio 3.597, <it>p </it>= 0.044).</p> <p>Conclusion</p> <p>Several molecular markers provided useful predictive and prognostic information in stage II and III breast cancer patients treated with neoadjuvant docetaxel/doxorubicin chemotherapy. Triple negative phenotype was associated with shorter survival, even though it was associated with a higher response rate to neoadjuvant chemotherapy.</p
    corecore