4,677 research outputs found

    L1 glosses: Effects on EFL learners’ reading comprehension and vocabulary retention

    Get PDF
    The present study examines the effects of 3 kinds of glosses—first-language (L1) Chinese glosses plus second-language (L2) English example sentences, L1 in-text glosses, and L1 marginal glosses—in comparison with a no-gloss condition in reading an English passage, to explore whether providing glosses can facilitate reading comprehension and vocabulary acquisition. A total of 135 undergraduate business and engineering students at 4 English proficiency levels studying at a technical university in Taiwan completed 1 vocabulary pretest, 1 reading session, 1 posttest, and 2 delayed vocabulary recall tests. The study found that L1 glosses helped subjects learn new words and review learned words. Learners’ retention declined between the immediate and the 1st delayed recall tests. However, between the 1st and 2nd delayed recall tests, a slight increase in retention was observed for all groups. Unexpectedly, reading comprehension did not improve significantly. Additionally, a questionnaire queried learners’ experience using glosses during reading

    Impurity-induced frustration in correlated oxides

    Full text link
    Using the example of Zn-doped La2CuO4, we demonstrate that a spinless impurity doped into a non-frustrated antiferromagnet can induce substantial frustrating interactions among the spins surrounding it. This counterintuitive result is the key to resolving discrepancies between experimental data and earlier theories. Analytic and quantum Monte Carlo studies of the impurity-induced frustration are in a close accord with each other and experiments. The mechanism proposed here should be common to other correlated oxides as well.Comment: 4 pages, updated figures, accepted versio

    Identification of GABA receptors in chick cornea

    Get PDF
    Purpose: The cornea has an important role in vision, is highly innervated and many neurotransmitter receptors are present, e.g., muscarine, melatonin, and dopamine receptors. γ-aminobutyric acid (GABA) is the most important inhibitory neurotransmitter in the retina and central nervous system, but it is unknown whether GABA receptors are present in cornea. The aim of this study was to determine if GABA receptors are located in chick cornea. Methods: Corneal tissues were collected from 25, 12-day-old chicks. Real time PCR, western blot, and immunohistochemistry were used to determine whether alpha1 GABAA, GABAB, and rho1 GABAC receptors were expressed and located in chick cornea. Results: Corneal tissue was positive for alpha1 GABAA and rho1 GABAC receptor mRNA (PCR) and protein (western blot) expression but was negative for GABAB receptor mRNA and protein. Alpha1 GABAA and rho1 GABAC receptor protein labeling was observed in the corneal epithelium using immunohistochemistry. Conclusions: These investigations clearly show that chick cornea possesses alpha1 GABAA, and rho1 GABAC receptors, but not GABAB receptors. The purpose of the alpha1 GABAA and rho1 GABAC receptors in cornea is a fascinating unexplored question

    Exact controllability of multiplex networks

    Get PDF
    Date of Acceptance: 11/09/2014Peer reviewedPublisher PD

    Strange nonchaotic attractors in noise driven systems

    Full text link
    Strange nonchaotic attractors (SNAs) in noise driven systems are investigated. Before the transition to chaos, due to the effect of noise, a typical trajectory will wander between the periodic attractor and its nearby chaotic saddle in an intermittent way, forms a strange attractor gradually. The existence of SNAs is confirmed by simulation results of various critera both in map and continuous systems. Dimension transition is found and intermittent behavior is studied by peoperties of local Lyapunov exponent. The universality and generalization of this kind of SNAs are discussed and common features are concluded

    Porcine Bladder Urothelial, Myofibroblast, and Detrusor Muscle Cells: Characterization and ATP Release

    Get PDF
    ATP is released from the bladder mucosa in response to stretch, but the cell types responsible are unclear. Our aim was to isolate and characterize individual populations of urothelial, myofibroblast, and detrusor muscle cells in culture, and to examine agonist-stimulated ATP release. Using female pig bladders, urothelial cells were isolated from bladder mucosa following trypsin-digestion of the luminal surface. The underlying myofibroblast layer was dissected, minced, digested, and cultured until confluent (10–14 days). A similar protocol was used for muscle cells. Cultures were used for immunocytochemical staining and/or ATP release investigations. In urothelial cultures, immunoreactivity was present for the cytokeratin marker AE1/AE3 but not the contractile protein α-smooth muscle actin (α-SMA) or the cytoskeletal filament vimentin. Neither myofibroblast nor muscle cell cultures stained for AE1/AE3. Myofibroblast cultures partially stained for α-SMA, whereas muscle cultures were 100% stained. Both myofibroblast and muscle stained for vimentin, however, they were morphologically distinct. Ultrastructural studies verified that the suburothelial layer of pig bladder contained abundant myofibroblasts, characterized by high densities of rough endoplasmic reticulum. Baseline ATP release was higher in urothelial and myofibroblast cultures, compared with muscle. ATP release was significantly stimulated by stretch in all three cell populations. Only urothelial cells released ATP in response to acid, and only muscle cells were stimulated by capsaicin. Tachykinins had no effect on ATP release. In conclusion, we have established a method for culture of three cell populations from porcine bladder, a well-known human bladder model, and shown that these are distinct morphologically, immunologically, and pharmacologically

    Detecting and characterizing high-frequency oscillations in epilepsy: a case study of big data analysis

    Get PDF
    We develop a framework to uncover and analyse dynamical anomalies from massive, nonlinear and non-stationary time series data. The framework consists of three steps: preprocessing of massive datasets to eliminate erroneous data segments, application of the empirical mode decomposition and Hilbert transform paradigm to obtain the fundamental components embedded in the time series at distinct time scales, and statistical/scaling analysis of the components. As a case study, we apply our framework to detecting and characterizing high-frequency oscillations (HFOs) from a big database of rat electroencephalogram recordings. We find a striking phenomenon: HFOs exhibit on–off intermittency that can be quantified by algebraic scaling laws. Our framework can be generalized to big data-related problems in other fields such as large-scale sensor data and seismic data analysis

    Topology of the conceptual network of language

    Full text link
    We define two words in a language to be connected if they express similar concepts. The network of connections among the many thousands of words that make up a language is important not only for the study of the structure and evolution of languages, but also for cognitive science. We study this issue quantitatively, by mapping out the conceptual network of the English language, with the connections being defined by the entries in a Thesaurus dictionary. We find that this network presents a small-world structure, with an amazingly small average shortest path, and appears to exhibit an asymptotic scale-free feature with algebraic connectivity distribution.Comment: 4 pages, 2 figures, Revte

    Nicotinic Receptor Subtype-Selective Circuit Patterns in the Subthalamic Nucleus

    Get PDF
    The glutamatergic subthalamic nucleus (STN) exerts control over motor output through nuclei of the basal ganglia. High-frequency electrical stimuli in the STN effectively alleviate motor symptoms in movement disorders, and cholinergic stimulation boosts this effect. To gain knowledge about the mechanisms of cholinergic modulation in the STN, we studied cellular and circuit aspects of nicotinic acetylcholine receptors (nAChRs) in mouse STN. We discovered two largely divergent microcircuits in the STN; these are regulated in part by either α4β2 or α7 nAChRs. STN neurons containing α4β2 nAChRs (α4β2 neurons) received more glutamatergic inputs, and preferentially innervated GABAergic neurons in the substantia nigra pars reticulata. In contrast, STN neurons containing α7 nAChRs (α7 neurons) received more GABAergic inputs, and preferentially innervated dopaminergic neurons in the substantia nigra pars compacta. Interestingly, local electrical stimuli excited a majority (79%) of α4β2 neurons but exerted strong inhibition in 58% of α7 neurons, indicating an additional diversity of STN neurons: responses to electrical stimulation. Chronic exposure to nicotine selectively affects α4β2 nAChRs in STN: this treatment increased the number of α4β2 neurons, upregulated α4-containing nAChR number and sensitivity, and enhanced the basal firing rate of α4β2 neurons both ex vivo and in vivo. Thus, chronic nicotine enhances the function of the microcircuit involving α4β2 nAChRs. This indicates chronic exposure to nicotinic agonist as a potential pharmacological intervention to alter selectively the balance between these two microcircuits, and may provide a means to inhibit substantia nigra dopaminergic neurons
    corecore