103 research outputs found

    Effects of Fire Retardant Treatments on Wood Strength: A Review

    Get PDF
    As evidenced by recent structural problems with fire-retardant-treated plywood, fire retardant chemicals and high temperature environments can degrade the strength properties of wood. We do not know to what extent fire retardant chemicals, thermal environment, and moisture content contribute to wood degradation. We suspect that the combination of acidic fire retardant chemicals and elevated temperatures increases the rate of acid hydrolysis in the wood, thereby causing a loss in strength. This paper presents a review of the pertinent literature on the factors influencing strength reduction in treated wood. These factors are the thermal degradation process of wood, the mechanism by which fire retardant chemicals alter wood degradation, the effect of acids on wood strength, the influence of temperature on strength, and the combined effect of fire retardant chemicals and temperature on strength. We also discuss possible long-term effects of in-service conditions on the strength of treated wood; the effects of treatment on the strength of weaker structural members and on species, size, and grade of lumber; and the application of the relationship between treatment and strength to plywood and lumber

    Directional isothermal growth of highly textured Bi2Sr2CaCu2Oy

    Get PDF
    For Bi2Sr2CaCu2Oy (2212), it is shown that an oxygen gradient, as opposed to a temperature gradient, can be used to produce large bulk forms of the 2212 superconductor with highly textured microstructures from an oxygen‐deficient melt held at a constant temperature. Material produced in this manner was found to have transition temperatures between 85 and 92 K, high critical current densities below 20 K, and modest critical current densities at 77 K

    Self-cleaning and antifouling nanocomposites for stone protection: Properties and performances of stone-nanomaterial systems

    Get PDF
    The development of nanocomposites combining photocatalytic, antifouling and protective features has provided interesting and promising results in the last years. However, few data about the behaviour of the nanomaterials applied on stone surfaces are available in the literature. In the framework of the EU-Horizon 2020 project "Nano-Cathedral", nanostructured protective treatments have been designed with different nanoparticles (TiO2, Ag, ZnO), solvents and silane/siloxane-based polymeric matrices. The innovative formulations have been applied on 6 lithotypes, selected among the stones used in five medieval cathedrals (Vitoria-Gasteiz, Ghent, Cologne, Vienna and Pisa) and a contemporary theatre (Oslo Opera House), which are emblematic of different European geological and environmental areas. The treated stone specimens have been fully characterized to evaluate the surface optical and morphological compatibility, the reduction of water absorption by capillarity, the change in wettability and water vapour permeability properties. The selected treatments fulfil all these requirements and exhibit good photocatalytic and antifouling properties once applied on stone specimens. Different accelerated ageing procedures have also been performed in order to evaluate the stability of the polymeric matrices in the presence of photoactive TiO2. © Published under licence by IOP Publishing Ltd

    Murine Pancreatic Adenocarcinoma Reduces Ikaros Expression and Disrupts T Cell Homeostasis

    Get PDF
    Background Maintenance of T cell immune homeostasis is critical for adequate anti-tumor immunity. The transcription factor Ikaros is essential for lymphocyte development including T cells. Alterations in Ikaros expression occur in blood malignancies in humans and mice. In this study, we investigated the role of Ikaros in regulating T cell immune balance in pancreatic cancer mouse models. Methodology and Principal Findings Using our Panc02 tumor-bearing (TB) mouse model, western blot analysis revealed a reduction in Ikaros proteins while qRT-PCR showed no differences in Ikaros mRNA levels in TB splenocytes compared to control. Treatment of naïve splenocytes with the proteasomal inhibitor, MG132, stabilized Ikaros expression and prevented Ikaros downregulation by Panc02 cells, in vitro. Western blot analyses showed a reduction in protein phosphatase 1 (PP1) and protein kinase CK2 expression in TB splenocytes while CK2 activity was increased. Immunofluorescence microscopy revealed altered punctate staining of Ikaros in TB splenocytes. Flow cytometry revealed a significant decrease in effector CD4+ and CD8+ T cell percentages but increased CD4+CD25+ regulatory T cells in TB splenocytes. Similar alterations in T cell percentages, as well as reduced Ikaros and CK2 but not PP1 expression, were observed in a transgenic, triple mutant (TrM) pancreatic cancer model. Ikaros expression was also reduced in enriched TB CD3+ T cells. MG132 treatment of naïve CD3+ T cells stabilized Ikaros expression in the presence of Panc02 cells. Western blots showed reduced PP1 and CK2 expression in TB CD3+ T cells. Conclusions/Significance The results of this study suggest that the pancreatic tumor microenvironment may cause proteasomal degradation of Ikaros, possibly via dysregulation of PP1 and CK2 expression and activity, respectively. This loss of Ikaros expression may contribute to an imbalance in T cell percentages. Ikaros may potentially be a therapeutic target to restore T cell homeostasis in pancreatic cancer hosts, which may be critical for effective anti-tumor immunity

    Mineral Preservatives in the Wood of Stradivari and Guarneri

    Get PDF
    Following the futile efforts of generations to reach the high standard of excellence achieved by the luthiers in Cremona, Italy, by variations of design and plate tuning, current interest is being focused on differences in material properties. The long-standing question whether the wood of Stradivari and Guarneri were treated with wood preservative materials could be answered only by the examination of wood specimens from the precious antique instruments. In a recent communication (Nature, 2006), we reported about the degradation of the wood polymers in instruments of Stradivari and Guarneri, which could be explained only by chemical manipulations, possibly by preservatives. The aim of the current work was to identify the minerals from the small samples of the maple wood which were available to us from the antique instruments. The ashes of wood from one violin and one cello by Stradivari, two violins by Guarneri, one viola by H. Jay, one violin by Gand-Bernardel were analyzed and compared with a variety of commercial tone woods. The methods of analysis were the following: back-scattered electron imaging, X-ray fluorescence maps for individual elements, wave-length dispersive spectroscopy, energy dispersive X-ray spectroscopy and quantitative microprobe analysis. All four Cremonese instruments showed the unmistakable signs of chemical treatments in the form of chemicals which are not present in natural woods, such as BaSO4, CaF2, borate, and ZrSiO4. In addition to these, there were also changes in the common wood minerals. Statistical evaluation of 12 minerals by discriminant analysis revealed: a. a difference among all four Cremona instruments, b. the difference of the Cremonese instruments from the French and English antiques, and c. only the Cremonese instruments differed from all commercial woods. These findings may provide the answer why all attempts to recreate the Stradivarius from natural wood have failed. There are many obvious implications with regard to how the green tone wood should be treated, which chould lead to changes in the practice of violin-making. This research should inspire others to analyze more antique violins for their chemical contents

    Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi

    Get PDF
    Abstract Wood decayed by brown rot fungi and wood treated with the chelator-mediated Fenton (CMF) reaction, either alone or together with a cellulose enzyme cocktail, was analyzed by small angle neutron scattering (SANS), sum frequency generation (SFG) spectroscopy, Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). Results showed that the CMF mechanism mimicked brown rot fungal attack for both holocellulose and lignin components of the wood. Crystalline cellulose and lignin were both depolymerized by the CMF reaction. Porosity of the softwood cell wall did not increase during CMF treatment, enzymes secreted by the fungi did not penetrate the decayed wood. The enzymes in the cellulose cocktail also did not appear to alter the effects of the CMF-treated wood relative to enhancing cell wall deconstruction. This suggests a rethinking of current brown rot decay models and supports a model where monomeric sugars and oligosaccharides diffuse from the softwood cell walls during non-enzymatic action. In this regard, the CMF mechanism should not be thought of as a “pretreatment” used to permit enzymatic penetration into softwood cell walls, but instead it enhances polysaccharide components diffusing to fungal enzymes located in wood cell lumen environments during decay. SANS and other data are consistent with a model for repolymerization and aggregation of at least some portion of the lignin within the cell wall, and this is supported by AFM and TEM data. The data suggest that new approaches for conversion of wood substrates to platform chemicals in biorefineries could be achieved using the CMF mechanism with >75% solubilization of lignocellulose, but that a more selective suite of enzymes and other downstream treatments may be required to work when using CMF deconstruction technology. Strategies to enhance polysaccharide release from lignocellulose substrates for enhanced enzymatic action and fermentation of the released fraction would also aid in the efficient recovery of the more uniform modified lignin fraction that the CMF reaction generates to enhance biorefinery profitability

    Recovery of high mountain Alpine lakes after the eradication of introduced brook trout Salvelinus fontinalis using non-chemical methods

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10530-018-1867-0Fish stocking is a serious threat to originally fishless mountain lakes. We used non-chemical eradication methods (i.e. gillnetting and electrofishing) in four high mountain lakes in the Gran Paradiso National Park (Western Italian Alps) to eradicate alien brook trout Salvelinus fontinalis. Data of amphibians, macroinvertebrates, zooplankton, chlorophyll-a, nutrient concentrations, and water transparency were used as indicators of the recovery process. All treated lakes were returned to their original fishless condition in spite of their different sizes and habitat complexity, without permanent negative side-effects for native species. Several ecological indicators showed that many impacts of introduced fish can be reversed over a short time period following eradication. The present study adds to a still growing body of specialized literature on the recovery of habitats after the eradication of alien species and provides further evidence that physical eradication methods are effective and can be part of a more general strategy for the conservation of high mountain lake biota
    • 

    corecore