960 research outputs found

    Prolycopene, a Naturally Occurring Stereoisomer of Lycopene

    Get PDF
    In this paper we record the observation that there occurs in the variety of tomato called "tangerine tomato" a carotenoid, prolycopene, which is an isomer of lycopene; the isomeric relationship is similar to that between lycopene and neolycopene,I and in our opinion prolycopene is to be classed as a naturally occurring neolycopene, being the first observed natural neo form of a C40-carotenoid

    Indolent lymphoma: the pathologist's viewpoint

    Get PDF
    Indolent lymphomas have recently been the object of numerous studies, which have focused on new aspects relevant both for the better comprehension of their histogenesis and the identification of new therapeutic strategies. As marginal-zone lymphoma (MZL) represents the category of indolent lymphomas that has obtained more benefit from such an approach, the authors focused on the most recent achievements and not yet solved controversies in this area. In spite of their postulated common derivation, the three categories of MZL of the WHO Classification appear dissimilar. In fact, they show significant molecular differences among them as well as a certain heterogeneity within each group. By no means, there is a cogent need of more refined tools to revise these neoplasms and to produce a more rational grouping. The recent identification of the IRTA gene family corresponding to IG-like receptors differentially expressed in B-cells might contribute to their better understandin

    Indolent lymphoma: the pathologist's viewpoint

    Get PDF
    Abstract Indolent lymphomas have recently been the object of numerous studies, which have focused on new aspects relevant both for the better comprehension of their histogenesis and the identification of new therapeutic strategies. As marginal-zone lymphoma (MZL) represents the category of indolent lymphomas that has obtained more benefit from such an approach, the authors focused on the most recent achievements and not yet solved controversies in this area. In spite of their postulated common derivation, the three categories of MZL of the WHO Classification appear dissimilar. In fact, they show significant molecular differences among them as well as a certain heterogeneity within each group. By no means, there is a cogent need of more refined tools to revise these neoplasms and to produce a more rational grouping. The recent identification of the IRTA gene family corresponding to IG-like receptors differentially expressed in B-cells might contribute to their better understanding

    Detecting, distinguishing, and spatiotemporally tracking photogenerated charge and heat at the nanoscale

    Full text link
    Since dissipative processes are ubiquitous in semiconductors, characterizing how electronic and thermal energy transduce and transport at the nanoscale is vital for understanding and leveraging their fundamental properties. For example, in low-dimensional transition metal dichalcogenides (TMDCs), excess heat generation upon photoexcitation is difficult to avoid since even with modest injected exciton densities, exciton-exciton annihilation still occurs. Both heat and photoexcited electronic species imprint transient changes in the optical response of a semiconductor, yet the unique signatures of each are difficult to disentangle in typical spectra due to overlapping resonances. In response, we employ stroboscopic optical scattering microscopy (stroboSCAT) to simultaneously map both heat and exciton populations in few-layer \ch{MoS2} on relevant nanometer and picosecond length- and time scales and with 100-mK temperature sensitivity. We discern excitonic contributions to the signal from heat by combining observations close to and far from exciton resonances, characterizing photoinduced dynamics for each. Our approach is general and can be applied to any electronic material, including thermoelectrics, where heat and electronic observables spatially interplay, and lays the groundwork for direct and quantitative discernment of different types of coexisting energy without recourse to complex models or underlying assumptions.Comment: 22 pages, 4 figures, SI included as ancilliary fil

    Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit

    Full text link
    In this work we explore the transmission properties of a single slit in a metallic screen. We analyze the dependence of these properties on both slit width and angle of incident radiation. We study in detail the crossover between the subwavelength regime and the geometrical-optics limit. In the subwavelength regime, resonant transmission linked to the excitation of waveguide resonances is analyzed. Linewidth of these resonances and their associated electric field intensities are controlled by just the width of the slit. More complex transmission spectra appear when the wavelength of light is comparable to the slit width. Rapid oscillations associated to the emergence of different propagating modes inside the slit are the main features appearing in this regime.Comment: Accepted for publication in Phys. Rev.

    A new diagnostic algorithm for Burkitt and diffuse large B-cell lymphomas based on the expression of CSE1L and STAT3 and on MYC rearrangement predicts outcome

    Get PDF
    Background Aggressive mature B-cell non-Hodgkin's lymphomas (BCL) sharing features of Burkitt's lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) (intermediate BL/DLBCL) but deviating with respect to one or more characteristics are increasingly recognized. The limited knowledge about these biologically heterogeneous lymphomas hampers their assignment to a known entity, raising incertitude about optimal treatment approaches. We therefore searched for discriminative, prognostic, and predictive factors for their better characterization. Patients and methods We analyzed 242 cytogenetically defined aggressive mature BCL for differential protein expression. Marker selection was based on recent gene-expression profile studies. Predictive models for diagnosis were established and validated by a different set of lymphomas. Results CSE1L- and inhibitor of DNA binding-3 (ID3)-overexpression was associated with the diagnosis of BL and signal transduction and transcription-3 (STAT3) with DLBCL (P<0.001 for all markers). All three markers were associated with patient outcome in DLBCL. A new algorithm discriminating BL from DLBCL emerged, including the expression of CSE1L, STAT3, and MYC translocation. This ‘new classifier' enabled the identification of patients with intermediate BL/DLBCL who benefited from intensive chemotherapy regimens. Conclusion The proposed algorithm, which is based on markers with reliable staining properties for routine diagnostics, represents a novel valid tool in separating BL from DLBCL. Most interestingly, it allows segregating intermediate BL/DLBCL into groups with different treatment requirement

    Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows

    Get PDF
    The micromachining technology that emerged in the late 1980s can provide micron-sized sensors and actuators. These micro transducers are able to be integrated with signal conditioning and processing circuitry to form micro-electro-mechanical-systems (MEMS) that can perform real-time distributed control. This capability opens up a new territory for flow control research. On the other hand, surface effects dominate the fluid flowing through these miniature mechanical devices because of the large surface-to-volume ratio in micron-scale configurations. We need to reexamine the surface forces in the momentum equation. Owing to their smallness, gas flows experience large Knudsen numbers, and therefore boundary conditions need to be modified. Besides being an enabling technology, MEMS also provide many challenges for fundamental flow-science research

    Development of novel oncology biomarkers for cancer

    Full text link
    • 

    corecore