323 research outputs found
Measurement of the electric dipole moments for transitions to rubidium Rydberg states via Autler-Townes splitting
We present the direct measurements of electric-dipole moments for
transitions with for Rubidium atoms. The
measurements were performed in an ultracold sample via observation of the
Autler-Townes splitting in a three-level ladder scheme, commonly used for
2-photon excitation of Rydberg states. To the best of our knowledge, this is
the first systematic measurement of the electric dipole moments for transitions
from low excited states of rubidium to Rydberg states. Due to its simplicity
and versatility, this method can be easily extended to other transitions and
other atomic species with little constraints. Good agreement of the
experimental results with theory proves the reliability of the measurement
method.Comment: 12 pages, 6 figures; figure 6 replaced with correct versio
Heterotic type IIA duality with fluxes - towards the complete story
In this paper we study the heterotic type IIA duality when fluxes are turned
on. We show that many of the known fluxes are dual to each other and claim that
certain fluxes on the heterotic side require that the type IIA picture is
lifted to M or even F-theory compactifications with geometric fluxes.Comment: 31 pages, references adde
Design optimisation using computational fluid dynamics applied to a land–based supersonic vehicle, the BLOODHOUND SSC
Recommended from our members
Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon
The carbon–carbon coupling via electrochemical reduction of carbon dioxide represents the biggest challenge for using this route as platform for chemicals synthesis. Here we show that nanostructured iron (III) oxyhydroxide on nitrogen-doped carbon enables high Faraday efficiency (97.4%) and selectivity to acetic acid (61%) at very-low potential (−0.5 V vs silver/silver chloride). Using a combination of electron microscopy, operando X-ray spectroscopy techniques and density functional theory simulations, we correlate the activity to acetic acid at this potential to the formation of nitrogen-coordinated iron (II) sites as single atoms or
polyatomic species at the interface between iron oxyhydroxide and the nitrogen-doped carbon. The evolution of hydrogen is correlated to the formation of metallic iron and observed as dominant reaction path over iron oxyhydroxide on oxygen-doped carbon in the overall range of negative potential investigated, whereas over iron oxyhydroxide on nitrogen-doped carbon it becomes important only at more negative potentials
Urea-mediated anomalous diffusion in supported lipid bilayers
Diffusion in biological membranes is seldom simply Brownian motion; instead, the rate of diffusion is dependent on the time scale of observation and so is often described as anomalous. In order to help better understand this phenomenon, model systems are needed where the anomalous diffusion of the lipid bilayer can be tuned and quantified. We recently demonstrated one such model by controlling the excluded area fraction in supported lipid bilayers (SLBs) through the incorporation of lipids derivatized with polyethylene glycol. Here, we extend this work, using urea to induce anomalous diffusion in SLBs. By tuning incubation time and urea concentration, we produce bilayers that exhibit anomalous behaviour on the same scale as that observed in biological membranes
European integration assessed in the light of the 'rules vs. standards debate'
The interplay of various legal systems in the European Union (EU) has long triggered a debate on the tension between uniformity and diversity of Member States' (MS) laws. This debate takes place among European legal scholars and is also paralleled by economic scholars, e.g. in the ambit of the 'theory of federalism'. This paper takes an innovative perspective on the discrepancy between 'centralized' and 'decentralized' law-making in the EU by assessing it with the help of the rules versus standards debate. When should the EU legislator grant the national legislator leeway in the formulation of new laws and when should all be fixed ex ante at European level? The literature on the 'optimal shape of legal norms' shall be revisited in the light of law-making in the EU, centrally dealing with the question how much discretion shall be given to the national legislator; and under which circumstances. This paper enhances the established decisive factors for the choice of a rule or a standard in a national setting (complexity, volatility, judges' specialization and frequency of application) by two new crucial factors (switching costs and the benefit of uniformity in terms of information costs) in order to assess law-making policies at EU level
Virtual reality surgery simulation: A survey on patient specific solution
For surgeons, the precise anatomy structure and its dynamics are important in the surgery interaction, which is critical for generating the immersive experience in VR based surgical training applications. Presently, a normal therapeutic scheme might not be able to be straightforwardly applied to a specific patient, because the diagnostic results are based on averages, which result in a rough solution. Patient Specific Modeling (PSM), using patient-specific medical image data (e.g. CT, MRI, or Ultrasound), could deliver a computational anatomical model. It provides the potential for surgeons to practice the operation procedures for a particular patient, which will improve the accuracy of diagnosis and treatment, thus enhance the prophetic ability of VR simulation framework and raise the patient care. This paper presents a general review based on existing literature of patient specific surgical simulation on data acquisition, medical image segmentation, computational mesh generation, and soft tissue real time simulation
Technological development of the OGRE focal plane array
The Off-plane Grating Rocket Experiment (OGRE) is a high resolution soft X-ray spectrometer sub-orbital rocket payload designed as a technology development platform for three low Technology Readiness Level (TRL) components. The incident photons will be focused using a light-weight, high resolution, single-crystal silicon optic. They are then dispersed conically according to wavelength by an array of off-plane gratings before being detected in a focal plane camera comprised of four Electron Multiplying Charge-Coupled Devices (EM-CCDs). While CCDs have been extensively used in space applications; EM-CCDs are seldom used in this environment and even more rarely for X-ray photon counting applications, making them a potential technology risk for larger scale X-ray observatories. This paper will discuss the reasons behind choosing EM-CCDs for the focal plane detector and the developments that have been recently made in the prototype camera electronics and thermal control system
- …
