1,482 research outputs found

    Resistive Switching Assisted by Noise

    Full text link
    We extend results by Stotland and Di Ventra on the phenomenon of resistive switching aided by noise. We further the analysis of the mechanism underlying the beneficial role of noise and study the EPIR (Electrical Pulse Induced Resistance) ratio dependence with noise power. In the case of internal noise we find an optimal range where the EPIR ratio is both maximized and independent of the preceding resistive state. However, when external noise is considered no beneficial effect is observed.Comment: To be published in "Theory and Applications of Nonlinear Dynamics: Model and Design of Complex Systems", Proceedings of ICAND 2012 (Springer, 2013

    Silylium-Catalyzed Activation of Donor- Acceptor Strained Rings and Annulation with Indoles

    Get PDF
    Leveraging the unique reactivity profile of donor-acceptor aminocyclopropanes and cyclobutanes allows the preparation of complex nitrogen-substituted molecules. While most reports focus on donor-acceptor strained rings with two geminal carbonyl groups as acceptors, mono carbonyl acceptor systems, despite their synthetic relevance, have been considerably less studied. Herein we describe catalytic annulation reactions ofaminocyclopropane and aminocyclobutane monoesters employing silylium catalysis to activate these less reactive donor-acceptor systems

    0-pi Josephson tunnel junctions with ferromagnetic barrier

    Full text link
    We fabricated high quality Nb/Al_2O_3/Ni_{0.6}Cu_{0.4}/Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Using a ferromagnetic layer with a step-like thickness, we obtain a 0-pi junction, with equal lengths and critical currents of 0 and pi parts. The ground state of our 330 microns (1.3 lambda_J) long junction corresponds to a spontaneous vortex of supercurrent pinned at the 0-pi step and carrying ~6.7% of the magnetic flux quantum Phi_0. The dependence of the critical current on the applied magnetic field shows a clear minimum in the vicinity of zero field.Comment: submitted to PR

    Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    Full text link
    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO2x_{2-x}) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfCx_x) at the surface during vacuum annealing at temperatures as low as 600 {\deg}C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfCx_x surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO2_2 thin films prepared and measured under identical conditions, the formation of HfCx_x was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating

    Mathematical modeling of demand in marketing goals by metrods of linear regression

    Get PDF
    In this paper the mathematical modeling of the demand for marketing purposes. This uses regression analysis and least squares method

    Theoretical current-voltage characteristics of ferroelectric tunnel junctions

    Get PDF
    We present the concept of ferroelectric tunnel junctions (FTJs). These junctions consist of two metal electrodes separated by a nanometer-thick ferroelectric barrier. The current-voltage characteristics of FTJs are analyzed under the assumption that the direct electron tunneling represents the dominant conduction mechanism. First, the influence of converse piezoelectric effect inherent in ferroelectric materials on the tunnel current is described. The calculations show that the lattice strains of piezoelectric origin modify the current-voltage relationship owing to strain-induced changes of the barrier thickness, electron effective mass, and position of the conduction-band edge. Remarkably, the conductance minimum becomes shifted from zero voltage due to the piezoelectric effect, and a strain-related resistive switching takes place after the polarization reversal in a ferroelectric barrier. Second, we analyze the influence of the internal electric field arising due to imperfect screening of polarization charges by electrons in metal electrodes. It is shown that, for asymmetric FTJs, this depolarizing-field effect also leads to a considerable change of the barrier resistance after the polarization reversal. However, the symmetry of the resulting current-voltage loop is different from that characteristic of the strain-related resistive switching. The crossover from one to another type of the hysteretic curve, which accompanies the increase of FTJ asymmetry, is described taking into account both the strain and depolarizing-field effects. It is noted that asymmetric FTJs with dissimilar top and bottom electrodes are preferable for the non-volatile memory applications because of a larger resistance on/off ratio.Comment: 14 pages, 8 figure

    Countrywide mapping of shrub forest using multi-sensor data and bias correction techniques

    Full text link
    The continual increase of shrub forest in the Swiss Alps over the past few decades impacts biodiversity, forest succession and the protective function of forests. Therefore, up-to-date and area-wide information on its distribution is of great interest. To detect the shrub forest areas for the whole of Switzerland (41,285 km2), we developed an approach that uses Random Forest (RF), bias correction techniques and data from multiple remote sensing sources. Manual aerial orthoimage interpretation of shrub forest areas was conducted in a non-probabilistic way to derive initial training data. The multi-sensor and open access predictor data included digital terrain and vegetation height models obtained from Airborne Laser Scanning (ALS) and stereo-imagery, as well as Synthetic Aperture Radar (SAR) backscatter from Sentinel-1 and multispectral imagery from Sentinel-2. To mitigate the expected bias due to the training data sampling strategy, two techniques using RF probability estimates were tested to improve mapping accuracy. 1) an iterative and semi-automated active learning technique was used to generate further training data and 2) threshold-moving related object growing was applied. Both techniques facilitated the production of a shrub forest map for the whole of Switzerland at a spatial resolution of 10 m. An accuracy assessment was performed using independent data covering 7640 regularly distributed National Forest Inventory (NFI) plots. We observed the influence of the bias correction techniques and found higher accuracies after each performed iteration. The Mean Absolute Error (MAE) for the predicted shrub forest proportion was reduced from 6.04% to 2.68% while achieving a Mean Bias Error (MBE) of close to 0. The present study underscores the potential of combining multi-sensor data with bias correction techniques to provide cost-effective and accurate countrywide detection of shrub forest. Moreover, the map complements currently available NFI plot sample point data

    A versatile protocol for Stille−Migita cross coupling reactions

    No full text
    The combination of catalytic amounts of [Pd(PPh3)4], copper thiophene-2-carboxylate (CuTC) and [Ph2PO2][NBu4] allowed a series of exigent Stille–Migita reactions to be performed with high yields; as the protocol is fluoride free, a variety of O-silyl and C-silyl groups remained intact

    Probing orbital ordering in LaVO3_{3} epitaxial films by Raman scattering

    Get PDF
    Single crystals of Mott-Hubbard insulator LaVO3 exhibit spin and orbital ordering along with a structural change below ≈140 K. The occurrence of orbital ordering in epitaxial LaVO3films has, however, been little investigated. By temperature-dependent Raman scatteringspectroscopy, we probed and evidenced the transition to orbital ordering in epitaxial LaVO3film samples fabricated by pulsed-laser deposition. This opens up the possibility to explore the influence of different epitaxial strain (compressive vs. tensile) and of epitaxy-induced distortions of oxygen octahedra on the orbital ordering, in epitaxial perovskite vanadate films
    corecore