21,318 research outputs found

    Covariant Uniform Acceleration

    Full text link
    We show that standard Relativistic Dynamics Equation F=dp/d\tau is only partially covariant. To achieve full Lorentz covariance, we replace the four-force F by a rank 2 antisymmetric tensor acting on the four-velocity. By taking this tensor to be constant, we obtain a covariant definition of uniformly accelerated motion. We compute explicit solutions for uniformly accelerated motion which are divided into four types: null, linear, rotational, and general. For null acceleration, the worldline is cubic in the time. Linear acceleration covariantly extends 1D hyperbolic motion, while rotational acceleration covariantly extends pure rotational motion. We use Generalized Fermi-Walker transport to construct a uniformly accelerated family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the Weak Hypothesis of Locality, we obtain local spacetime transformations from a uniformly accelerated frame K' to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. We obtain velocity and acceleration transformations from a uniformly accelerated system K' to an inertial frame K. We derive the general formula for the time dilation between accelerated clocks. We obtain a formula for the angular velocity of a uniformly accelerated object. Every rest point of K' is uniformly accelerated, and its acceleration is a function of the observer's acceleration and its position. We obtain an interpretation of the Lorentz-Abraham-Dirac equation as an acceleration transformation from K' to K.Comment: 36 page

    Nuclear Multifragmentation Critical Exponents

    Full text link
    We show that the critical exponents of nuclear multi-fragmentation have not been determined conclusively yet.Comment: 3 pages, LaTeX, one postscript figure appended, sub. to Phys.Rev.Lett. as a commen

    Calculation of compressible flow about three-dimensional inlets with auxiliary inlets, slats and vanes by means of a panel method

    Get PDF
    An efficient and user oriented method was constructed for calculating flow in and about complex inlet configurations. Efficiency is attained by: (1) the use of a panel method; (2) a technique of superposition for obtaining solutions at any inlet operating condition; and (3) employment of an advanced matrix iteration technique for solving large full systems of equations, including the nonlinear equations for the Kutta condition. User concerns are addressed by the provision of several novel graphical output options that yield a more complete comprehension of the flowfield than was possible previously

    Radiation of Angular Momentum by Neutrinos from Merged Binary Neutron Stars

    Get PDF
    We study neutrino emission from the remnant of an inspiraling binary neutron star following coalescence. The mass of the merged remnant is likely to exceed the stability limit of a cold, rotating neutron star. However, the angular momentum of the remnant may also approach or even exceed the Kerr limit, J/M^2 = 1, so that total collapse may not be possible unless some angular momentum is dissipated. We find that neutrino emission is very inefficient in decreasing the angular momentum of these merged objects and may even lead to a small increase in J/M^2. We illustrate these findings with a post-Newtonian, ellipsoidal model calculation. Simple arguments suggest that the remnant may form a bar mode instability on a timescale similar to or shorter than the neutrino emission timescale, in which case the evolution of the remnant will be dominated by the emission of gravitational waves.Comment: 12 pages AASTeX, 2 figures, to appear in Ap

    Organizing to Win: Introduction

    Get PDF
    [Excerpt] The American labor movement is at a watershed. For the first time since the early years of industrial unionism sixty years ago, there is near-universal agreement among union leaders that the future of the movement depends on massive new organizing. In October 1995, John Sweeney, Richard Trumka, and Linda Chavez-Thompson were swept into the top offices of the AFL-CIO, following a campaign that promised organizing at an unprecedented pace and scale. Since taking office, the new AFL-CIO leadership team has created a separate organizing department and has committed $20 million to support coordinated large-scale industry-based organizing drives. In addition, in the summer of 1996, the AFL-CIO launched the Union Summer program, which placed more than a thousand college students and young workers in organizing campaigns across the country

    Testing Einstein's time dilation under acceleration using M\"ossbauer spectroscopy

    Full text link
    The Einstein time dilation formula was tested in several experiments. Many trials have been made to measure the transverse second order Doppler shift by M\"{o}ssbauer spectroscopy using a rotating absorber, to test the validity of this formula. Such experiments are also able to test if the time dilation depends only on the velocity of the absorber, as assumed by Einstein's clock hypothesis, or the present centripetal acceleration contributes to the time dilation. We show here that the fact that the experiment requires Îł\gamma-ray emission and detection slits of finite size, the absorption line is broadened; by geometric longitudinal first order Doppler shifts immensely. Moreover, the absorption line is non-Lorenzian. We obtain an explicit expression for the absorption line for any angular velocity of the absorber. The analysis of the experimental results, in all previous experiments which did not observe the full absorption line itself, were wrong and the conclusions doubtful. The only proper experiment was done by K\"{u}ndig (Phys. Rev. 129 (1963) 2371), who observed the broadening, but associated it to random vibrations of the absorber. We establish necessary conditions for the successful measurement of a transverse second order Doppler shift by M\"{o}ssbauer spectroscopy. We indicate how the results of such an experiment can be used to verify the existence of a Doppler shift due to acceleration and to test the validity of Einstein's clock hypothesis.Comment: 11 pages, 4 figure

    Collisionless shocks in plasmas

    Get PDF
    Collisionless shocks in plasmas, dissipation and dispersion in determining shock structur

    Suspension systems for ground testing large space structures

    Get PDF
    A research program is documented for the development of improved suspension techniques for ground vibration testing of large, flexible space structures. The suspension system must support the weight of the structure and simultaneously allow simulation of the unconstrained rigid-body movement as in the space environment. Exploratory analytical and experimental studies were conducted for suspension systems designed to provide minimum vertical, horizontal, and rotational degrees of freedom. The effects of active feedback control added to the passive system were also investigated. An experimental suspension apparatus was designed, fabricated, and tested. This test apparatus included a zero spring rate mechanism (ZSRM) designed to support a range of weights from 50 to 300 lbs and provide vertical suspension mode frequencies less than 0.1 Hz. The lateral suspension consisted of a pendulum suspended from a moving cart (linear bearing) which served to increase the effective length of the pendulum. The torsion suspension concept involved dual pendulum cables attached from above to a pivoting support (bicycle wheel). A simple test structure having variable weight and stiffness characteristics was used to simulate the vibration characteristics of a large space structure. The suspension hardware for the individual degrees of freedom was analyzed and tested separately and then combined to achieve a 3 degree of freedom suspension system. Results from the exploratory studies should provide useful guidelines for the development of future suspension systems for ground vibration testing of large space structures
    • …
    corecore