149 research outputs found

    Model of brain maintenance reveals specific change-change association between medial-temporal lobe integrity and episodic memory

    Get PDF
    Brain maintenance has been identified as a major determinant of successful memory aging. However, the extent to which brain maintenance in support of successful memory aging is specific to memory-related brain regions or forms part of a brain-wide phenomenon is unresolved. Here, we used longitudinal brain-wide gray matter MRI volumes in 262 healthy participants aged 55 to 80 years at baseline to investigate separable dimensions of brain atrophy, and explored the links of these dimensions to different dimensions of cognitive change. We statistically adjusted for common causes of change in both brain and cognition to reveal a potentially unique signature of brain maintenance related to successful memory aging. Critically, medial temporal lobe (MTL)/hippocampal change and episodic memory change were characterized by unique, residual variance beyond general factors of change in brain and cognition, and a reliable association between these two residualized variables was established (r = 0.36, p < 0.01). The present study is the first to provide solid evidence for a specific association between changes in (MTL)/hippocampus and episodic memory in normal human aging. We conclude that hippocampus-specific brain maintenance relates to the specific preservation of episodic memory in old age, in line with the notion that brain maintenance operates at both general and domain-specific levels

    Can Intrapartum Cardiotocography Predict Uterine Rupture among Women with Prior Caesarean Delivery?:A Population Based Case-Control Study

    Get PDF
    OBJECTIVE: To compare cardiotocographic abnormalities recorded during labour in women with prior caesarean delivery (CD) and complete uterine rupture with those recorded in controls with prior CD without uterine rupture. STUDY DESIGN: Women with complete uterine rupture during labour between 1997 and 2008 were identified in the Danish Medical Birth Registry (n = 181). Cases were validated by review of medical records and 53 cases with prior CD, trial of labour, available cardiotocogram (CTG) and complete uterine rupture were included and compared with 43 controls with prior CD, trial of labour and available CTG. The CTG tracings were assessed by 19 independent experts divided into groups of three different experts for each tracing. The assessors were blinded to group, outcome and clinical data. They analyzed occurrence of defined abnormalities and classified the traces as normal, suspicious, pathological or pre-terminal according to international guidelines (FIGO). RESULTS: A pathological CTG during the first stage of labour was present in 77% of cases and in 53% of the controls (OR 2.58 [CI: 0.96–6.94] P = 0.066). Fetal tachycardia was more frequent in cases with uterine rupture (OR 2.50 [CI: 1.0–6.26] P = 0.053). Significantly more cases showed more than 10 severe variable decelerations compared with controls (OR 22 [CI: 1.54–314.2] P = 0.022). Uterine tachysystole was not correlated with the presence of uterine rupture. CONCLUSION: A pathological cardiotocogram should lead to particular attention on threatening uterine rupture but cannot be considered a strong predictor as it is common in all women with trial of labour after caesarean delivery

    Longitudinal dopamine D2 receptor changes and cerebrovascular health in aging

    Get PDF
    BACKGROUND AND OBJECTIVES: Cross-sectional studies suggest marked dopamine (DA) decline in aging, but longitudinal evidence is lacking. The aim of this study was to estimate within-person decline rates for DA D2-like receptors (DRD2) in aging and examine factors that may contribute to individual differences in DRD2 decline rates. METHODS: We investigated 5-year within-person changes in DRD2 availability in a sample of older adults. At both occasions, PET with 11C-raclopride and MRI were used to measure DRD2 availability in conjunction with structural and vascular brain integrity. RESULTS: Longitudinal analyses of the sample (baseline: n = 181, ages: 64-68 years, 100 men and 81 women; 5-year follow-up: n = 129, 69 men and 60 women) revealed aging-related striatal and extrastriatal DRD2 decline, along with marked individual differences in rates of change. Notably, the magnitude of striatal DRD2 decline was ∼50% of past cross-sectional estimates, suggesting that the DRD2 decline rate has been overestimated in past cross-sectional studies. Significant DRD2 reductions were also observed in select extrastriatal regions, including hippocampus, orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC). Distinct profiles of correlated DRD2 changes were found across several associative regions (ACC, dorsal striatum, and hippocampus) and in the reward circuit (nucleus accumbens and OFC). DRD2 losses in associative regions were associated with white matter lesion progression, whereas DRD2 losses in limbic regions were related to reduced cortical perfusion. DISCUSSION: These findings provide the first longitudinal evidence for individual and region-specific differences of DRD2 decline in older age and support the hypothesis that cerebrovascular factors are linked to age-related dopaminergic decline

    Influence of Deicing Salts on the Water-Repellency of Portland Cement Concrete Coated with Polytetrafluoroethylene and Polyetheretherketone

    Get PDF
    Sustainable super water/ice-repellent pavements are gaining attention as a smart solution for mitigating problems associated with winter pavement maintenance of roadways and airfields. Such smart pavements can facilitate surface drainage and prevent or curb ice formation or snow accumulation. While a conventional method for melting ice and snow is the use of deicing chemicals, such materials can transfer to the surface of nanotechnology-based pavements and influence their water/icerepellency by changing the chemistry of water or ice. This study focused on characterizing the degree of hydrophobicity of Portland cement concrete (PCC) nanocoated with polytetrafluoroethylene/polyetheretherketone (PTFE/PEEK). A layer-bylayer (LBL) spray deposition technique was used for spraying the binding agent and water-repellent materials. The liquid-repellency was characterized by measuring the static liquid contact angles (LCAs) and calculating the works of adhesion (WA). The liquid types used included distilled water and two types of deicing chemicals prepared by dissolving salts in distilled water. Data analysis results revealed that salt contamination improves the water-repellency of nano-coated surfaces

    Mechanisms driving variability in the ocean forcing of Pine Island Glacier

    Get PDF
    Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and temperature are implicated in the retreat and growing contribution to sea level rise of PIG and nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly constrained due to a lack of multi-year observations. Here we show, using a unique record close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at seasonal and interannual timescales, including a pronounced cold period from October 2011 to May 2013. This variability can be largely explained by two processes: cumulative ocean surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean currents and associated heat transport within Pine Island Bay, driven by a combination of local and remote forcing. Local atmospheric forcing therefore plays an important role in driving oceanic variability close to PIIS

    A participatory physical and psychosocial intervention for balancing the demands and resources among industrial workers (PIPPI): study protocol of a cluster-randomized controlled trial

    Get PDF
    Background: Need for recovery and work ability are strongly associated with high employee turnover, well-being and sickness absence. However, scientific knowledge on effective interventions to improve work ability and decrease need for recovery is scarce. Thus, the present study aims to describe the background, design and protocol of a cluster randomized controlled trial evaluating the effectiveness of an intervention to reduce need for recovery and improve work ability among industrial workers. Methods/Design: A two-year cluster randomized controlled design will be utilized, in which controls will also receive the intervention in year two. More than 400 workers from three companies in Denmark will be aimed to be cluster randomized into intervention and control groups with at least 200 workers (at least 9 work teams) in each group. An organizational resources audit and subsequent action planning workshop will be carried out to map the existing resources and act upon initiatives not functioning as intended. Workshops will be conducted to train leaders and health and safety representatives in supporting and facilitating the intervention activities. Group and individual level participatory visual mapping sessions will be carried out allowing team members to discuss current physical and psychosocial work demands and resources, and develop action plans to minimize strain and if possible, optimize the resources. At all levels, the intervention will be integrated into the existing organization of work schedules. An extensive process and effect evaluation on need for recovery and work ability will be carried out via questionnaires, observations, interviews and organizational data assessed at several time points throughout the intervention period. Discussion: This study primarily aims to develop, implement and evaluate an intervention based on the abovementioned features which may improve the work environment, available resources and health of industrial workers, and hence their need for recovery and work ability

    Wind-Driven Processes Controlling Oceanic Heat Delivery to the Amundsen Sea, Antarctica

    Get PDF
    Variability in the heat delivery by Circumpolar Deep Water (CDW) is responsible for modulating the basal melting of the Amundsen Sea ice shelves. However, the mechanisms controlling the CDW inflow to the region’s continental shelf remain little understood. Here, a high-resolution regional model is used to assess the processes governing heat delivery to the Amundsen Sea. The key mechanisms are identified by decomposing CDW temperature variability into two components associated with 1) changes in the depth of isopycnals [heave (HVE)], and 2) changes in the temperature of isopycnals [water mass property changes (WMP)]. In the Dotson–Getz trough, CDW temperature variability is primarily associated with WMP. The deeper thermocline and shallower shelf break hinder CDW access to that trough, and CDW inflow is regulated by the uplift of isopycnals at the shelf break—which is itself controlled by wind-driven variations in the speed of an undercurrent flowing eastward along the continental slope. In contrast, CDW temperature variability in the Pine Island–Thwaites trough is mainly linked to HVE. The shallower thermocline and deeper shelf break there permit CDW to persistently access the continental shelf. CDW temperature in the area responds to wind-driven modulation of the water mass on-shelf volume by changes in the rate of inflow across the shelf break and in Ekman pumping-induced vertical displacement of isopycnals within the shelf. The western and eastern Amundsen Sea thus represent distinct regimes, in which wind forcing governs CDW-mediated heat delivery via different dynamics
    corecore