52 research outputs found
A characterization of balanced episturmian sequences
It is well known that Sturmian sequences are the aperiodic sequences that are
balanced over a 2-letter alphabet. They are also characterized by their
complexity: they have exactly factors of length . One possible
generalization of Sturmian sequences is the set of infinite sequences over a
-letter alphabet, , which are closed under reversal and have at
most one right special factor for each length. This is the set of episturmian
sequences. These are not necessarily balanced over a -letter alphabet, nor
are they necessarily aperiodic. In this paper, we characterize balanced
episturmian sequences, periodic or not, and prove Fraenkel's conjecture for the
class of episturmian sequences. This conjecture was first introduced in number
theory and has remained unsolved for more than 30 years. It states that for a
fixed , there is only one way to cover by Beatty sequences. The
problem can be translated to combinatorics on words: for a -letter alphabet,
there exists only one balanced sequence up to letter permutation that has
different letter frequencies
Enumerating Abelian Returns to Prefixes of Sturmian Words
We follow the works of Puzynina and Zamboni, and Rigo et al. on abelian
returns in Sturmian words. We determine the cardinality of the set
of abelian returns of all prefixes of a Sturmian word in
terms of the coefficients of the continued fraction of the slope, dependingly
on the intercept. We provide a simple algorithm for finding the set
and we determine it for the characteristic Sturmian words.Comment: 19page
Describing the set of words generated by interval exchange transformation
Let be an infinite word over finite alphabet . We get combinatorial
criteria of existence of interval exchange transformations that generate the
word W.Comment: 17 pages, this paper was submitted at scientific council of MSU,
date: September 21, 200
Evolution of Brain Tumor and Stability of Geometric Invariants
This paper presents a method to reconstruct and to calculate geometric invariants on brain tumors. The geometric invariants considered in the paper are the volume, the area, the discrete Gauss curvature, and the discrete mean curvature. The volume of a tumor is an important aspect that helps doctors to make a medical diagnosis. And as doctors seek a stable calculation, we propose to prove the stability of some invariants. Finally, we study the evolution of brain tumor as a function of time in two or three years depending on patients with MR images every three or six months
An algebraic approach to the reconstruction of uniform hypergraphs from their degree sequence
The reconstruction of a (hyper)graph starting from its degree sequence is one of the most relevant among the inverse problems investigated in the field of graph theory. In case of graphs, a feasible solution can be quickly reached, while in case of hypergraphs Deza et al. (2018) proved that the problem is NP-hard even in the simple case of 3-uniform ones. This result opened a new research line consisting in the detection of instances for which a solution can be computed in polynomial time. In this work we deal with 3-uniform hypergraphs, and we study them from a different perspective, exploiting a connection of these objects with partially ordered sets. More precisely, we introduce a simple partially ordered set, whose ideals are in bijection with a subclass of 3-uniform hypergraphs. We completely characterize their degree sequences in case of principal ideals (here a simple fast reconstruction strategy follows), and we furthermore carry on a complete analysis of those degree sequences related to the ideals with two generators. We also consider unique hypergraphs in Dext, i.e., those hypergraphs that do not share their degree sequence with other non-isomorphic ones. We show that uniqueness holds in case of hypergraphs associated to principal ideals, and we provide some examples of hypergraphs in Dext where this property is lost
On the Language of Standard Discrete Planes and Surfaces
International audienceA standard discrete plane is a subset of Z^3 verifying the double Diophantine inequality mu =< ax+by+cz < mu + omega, with (a,b,c) != (0,0,0). In the present paper we introduce a generalization of this notion, namely the (1,1,1)-discrete surfaces. We first study a combinatorial representation of discrete surfaces as two-dimensional sequences over a three-letter alphabet and show how to use this combinatorial point of view for the recognition problem for these discrete surfaces. We then apply this combinatorial representation to the standard discrete planes and give a first attempt of to generalize the study of the dual space of parameters for the latter [VC00]
Beta-Strand Interfaces of Non-Dimeric Protein Oligomers Are Characterized by Scattered Charged Residue Patterns
Protein oligomers are formed either permanently, transiently or even by default. The protein chains are associated through intermolecular interactions constituting the protein interface. The protein interfaces of 40 soluble protein oligomers of stœchiometries above two are investigated using a quantitative and qualitative methodology, which analyzes the x-ray structures of the protein oligomers and considers their interfaces as interaction networks. The protein oligomers of the dataset share the same geometry of interface, made by the association of two individual β-strands (β-interfaces), but are otherwise unrelated. The results show that the β-interfaces are made of two interdigitated interaction networks. One of them involves interactions between main chain atoms (backbone network) while the other involves interactions between side chain and backbone atoms or between only side chain atoms (side chain network). Each one has its own characteristics which can be associated to a distinct role. The secondary structure of the β-interfaces is implemented through the backbone networks which are enriched with the hydrophobic amino acids favored in intramolecular β-sheets (MCWIV). The intermolecular specificity is provided by the side chain networks via positioning different types of charged residues at the extremities (arginine) and in the middle (glutamic acid and histidine) of the interface. Such charge distribution helps discriminating between sequences of intermolecular β-strands, of intramolecular β-strands and of β-strands forming β-amyloid fibers. This might open new venues for drug designs and predictive tool developments. Moreover, the β-strands of the cholera toxin B subunit interface, when produced individually as synthetic peptides, are capable of inhibiting the assembly of the toxin into pentamers. Thus, their sequences contain the features necessary for a β-interface formation. Such β-strands could be considered as ‘assemblons’, independent associating units, by homology to the foldons (independent folding unit). Such property would be extremely valuable in term of assembly inhibitory drug development
- …
