128 research outputs found

    Concept image and concept definition in mathematics with particular reference to limits and continuity

    Get PDF
    The concept image consists of all the cognitive structure in the individual's mind that is associated with a given concept. This may not be globally coherent and may have aspects which are quite different from the formal concept definition. The development of limits and continuity, as taught in secondary school and university, are considered. Various investigations are reported which demonstrate individual concept images differing from the formal theory and containing factors which cause cognitive conflict

    Confidence trick: the interpretation of confidence intervals

    Get PDF
    The frequent misinterpretation of the nature of confidence intervals by students has been well documented. This article examines the problem as an aspect of the learning of mathematical definitions and considers the tension between parroting mathematically rigorous, but essentially uninternalized, statements on the one hand and expressing imperfect but developing understandings on the other. A small-scale study among schoolteachers sought comments on four definitions expressing differing understandings of confidence intervals, and these are examined and discussed. The article concludes that some student wordings could be regarded as less inaccurate than they might seem at first sight and presents a case for accepting a wider range of more intuitive understandings as a work in progress

    Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans

    Get PDF
    Despite broad agreement that the Americas were initially populated via Beringia, the land bridge that connected far northeast Asia with northwestern North America during the Pleistocene epoch, when and how the peopling of the Americas occurred remains unresolved. Analyses of human remains from Late Pleistocene Alaska are important to resolving the timing and dispersal of these populations. The remains of two infants were recovered at Upward Sun River (USR), and have been dated to around 11.5 thousand years ago (ka). Here, by sequencing the USR1 genome to an average coverage of approximately 17 times, we show that USR1 is most closely related to Native Americans, but falls basal to all previously sequenced contemporary and ancient Native Americans. As such, USR1 represents a distinct Ancient Beringian population. Using demographic modelling, we infer that the Ancient Beringian population and ancestors of other Native Americans descended from a single founding population that initially split from East Asians around 36 ± 1.5 ka, with gene flow persisting until around 25 ± 1.1 ka. Gene flow from ancient north Eurasians into all Native Americans took place 25–20 ka, with Ancient Beringians branching off around 22–18.1 ka. Our findings support a long-term genetic structure in ancestral Native Americans, consistent with the Beringian ‘standstill model’. We show that the basal northern and southern Native American branches, to which all other Native Americans belong, diverged around 17.5–14.6 ka, and that this probably occurred south of the North American ice sheets. We also show that after 11.5 ka, some of the northern Native American populations received gene flow from a Siberian population most closely related to Koryaks, but not Palaeo-Eskimos, Inuits or Kets, and that Native American gene flow into Inuits was through northern and not southern Native American groups. Our findings further suggest that the far-northern North American presence of northern Native Americans is from a back migration that replaced or absorbed the initial founding population of Ancient Beringians

    Immunological analysis of a Lactococcus lactis-based DNA vaccine expressing HIV gp120

    Get PDF
    For reasons of efficiency Escherichia coli is used today as the microbial factory for production of plasmid DNA vaccines. To avoid hazardous antibiotic resistance genes and endotoxins from plasmid systems used nowadays, we have developed a system based on the food-grade Lactococcus lactis and a plasmid without antibiotic resistance genes. We compared the L. lactis system to a traditional one in E. coli using identical vaccine constructs encoding the gp120 of HIV-1. Transfection studies showed comparable gp120 expression levels using both vector systems. Intramuscular immunization of mice with L. lactis vectors developed comparable gp120 antibody titers as mice receiving E. coli vectors. In contrast, the induction of the cytolytic response was lower using the L. lactis vector. Inclusion of CpG motifs in the plasmids increased T-cell activation more when the E. coli rather than the L. lactis vector was used. This could be due to the different DNA content of the vector backbones. Interestingly, stimulation of splenocytes showed higher adjuvant effect of the L. lactis plasmid. The study suggests the developed L. lactis plasmid system as new alternative DNA vaccine system with improved safety features. The different immune inducing properties using similar gene expression units, but different vector backbones and production hosts give information of the adjuvant role of the silent plasmid backbone. The results also show that correlation between the in vitro adjuvanticity of plasmid DNA and its capacity to induce cellular and humoral immune responses in mice is not straight forward

    Teaching and Learning of Calculus

    Get PDF
    This survey focuses on the main trends in the field of calculus education. Despite their variety, the findings reveal a cornerstone issue that is strongly linked to the formalism of calculus concepts and to the difficulties it generates in the learning and teaching process. As a complement to the main text, an extended bibliography with some of the most important references on this topic is included. Since the diversity of the research in the field makes it difficult to produce an exhaustive state-of-the-art summary, the authors discuss recent developments that go beyond this survey and put forward new research questions

    100 ancient genomes show repeated population turnovers in Neolithic Denmark.

    Get PDF
    Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales <sup>1-4</sup> . However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution <sup>5-7</sup> . Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet ( <sup>13</sup> C and <sup>15</sup> N content), mobility ( <sup>87</sup> Sr/ <sup>86</sup> Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use

    Doctoral students’ use of examples in evaluating and proving conjectures

    Get PDF
    The final publication is available at: www.springerlink.comThis paper discusses variation in reasoning strategies among expert mathematicians, with a particular focus on the degree to which they use examples to reason about general conjectures. We first discuss literature on the use of examples in understanding and reasoning about abstract mathematics, relating this to a conceptualisation of syntactic and semantic reasoning strategies relative to a representation system of proof. We then use this conceptualisation as a basis for contrasting the behaviour of two successful mathematics research students whilst they evaluated and proved number theory conjectures. We observe that the students exhibited strikingly different degrees of example use, and argue that previously observed individual differences in reasoning strategies may exist at the expert level. We conclude by discussing implications for pedagogy and for future research

    Publisher Correction: Population genomics of post-glacial western Eurasia.

    Get PDF
    corecore