80 research outputs found

    Laboratory and tentative interstellar detection of trans-methyl formate using the publicly available Green Bank Telescope PRIMOS survey

    Full text link
    The rotational spectrum of the higher-energy trans conformational isomer of methyl formate has been assigned for the first time using several pulsed-jet Fourier transform microwave spectrometers in the 6-60 GHz frequency range. This species has also been sought toward the Sagittarius B2(N) molecular cloud using the publicly available PRIMOS survey from the Green Bank Telescope. We detect seven absorption features in the survey that coincide with laboratory transitions of trans-methyl formate, from which we derive a column density of 3.1 (+2.6, -1.2) \times 10^13 cm-2 and a rotational temperature of 7.6 \pm 1.5 K. This excitation temperature is significantly lower than that of the more stable cis conformer in the same source but is consistent with that of other complex molecular species recently detected in Sgr B2(N). The difference in the rotational temperatures of the two conformers suggests that they have different spatial distributions in this source. As the abundance of trans-methyl formate is far higher than would be expected if the cis and trans conformers are in thermodynamic equilibrium, processes that could preferentially form trans-methyl formate in this region are discussed. We also discuss measurements that could be performed to make this detection more certain. This manuscript demonstrates how publicly available broadband radio astronomical surveys of chemically rich molecular clouds can be used in conjunction with laboratory rotational spectroscopy to search for new molecules in the interstellar medium.Comment: 40 pages, 7 figures, 4 tables; accepted for publication in Ap

    Spatial distribution of low-energy plasma around 2 comet 67P/CG from Rosetta measurements

    Get PDF
    International audienceWe use measurements from the Rosetta plasma consortium (RPC) Langmuir probe (LAP) and mutual impedance probe (MIP) to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e. the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be ∌1-2·10 −6 , at a cometocentric distance of 10 km and at 3.1 AU from the sun. A clear 6.2 h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisonless plasma within 260 km from the nucleus falls of with radial distance as ∌1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet

    Effective ion speeds at ~200–250 km from comet 67P/Churyumov–Gerasimenko near perihelion

    Get PDF
    In 2015 August, comet 67P/Churyumov–Gerasimenko, the target comet of the ESA Rosetta mission, reached its perihelion at ~1.24 au. Here, we estimate for a three-day period near perihelion, effective ion speeds at distances ~200–250 km from the nucleus. We utilize two different methods combining measurements from the Rosetta Plasma Consortium (RPC)/Mutual Impedance Probe with measurements either from the RPC/Langmuir Probe or from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Comet Pressure Sensor (COPS) (the latter method can only be applied to estimate the effective ion drift speed). The obtained ion speeds, typically in the range 2–8 km s⁻Âč, are markedly higher than the expected neutral outflow velocity of ~1 km s⁻Âč. This indicates that the ions were de-coupled from the neutrals before reaching the spacecraft location and that they had undergone acceleration along electric fields, not necessarily limited to acceleration along ambipolar electric fields in the radial direction. For the limited time period studied, we see indications that at increasing distances from the nucleus, the fraction of the ions’ kinetic energy associated with radial drift motion is decreasing

    Manifestations of Culture in Website Design

    Get PDF
    The web is a global phenomenon and its reach and influence ignores political and cultural boundaries. However, the web’s global presence and easy accessibility does not also mean there are no issues related to the understanding and interpretations of its content. Of particular interest to us is to find out whether there is any effect of culture on web design. In this paper, we report on our research into the identification of elements that can be attributed to culture on website design. We examined and compared South Korean and UK’s charity websites and identified these elements of the websites. The findings suggest that there are some differences and preferences in the website design that are mostly related to whether the websites employ multimedia and provide facilities for user input. <!--EndFragment--
    • 

    corecore