672 research outputs found

    National scale modelling to test UK population growth and infrastructure scenarios

    Get PDF
    This paper describes an exploratory methodology used to study the national scale issues of population growth and infrastructure implementation across the UK. The project was carried out for the Government Office for Science in 2015, focussing on two key questions: how could a “spatially driven” scenario provoke new thinking on accommodating forecast growth, and; what would be the impact of transport infrastructure investments within this context. Addressing these questions required the construction of a national scale spatial model that also needed to integrate datasets on population and employment. Models were analysed and profiled initially to identify existing relationships between the distribution of population and employment against the spatial network. Based on these profiles, an experimental methodology was used to firstly identify cities with the potential to accommodate growth, then secondly to allocate additional population proportionally. This raises important questions for discussion around which cities provide the benchmark for growth and why, as well as what the optimal spatial conditions for population growth may be, and how this growth should be accommodated locally. Later the model was used to study the impact of High Speed Rail. As these proposed infrastructure changes improve service (capacity, frequency, journey time), rather than creating new topological connections, the model was adapted to be able to produce time based catchments as an output. These catchments could then be expressed in terms of the workforce population within an hour of every city (a potential travel to work area), as well as the number of employment opportunities within an hour of every household

    Apparatus to control and visualize the impact of a high-energy laser pulse on a liquid target

    Get PDF
    We present an experimental apparatus to control and visualize the response of a liquid target to a laser-induced vaporization. We use a millimeter-sized drop as target and present two liquid-dye solutions that allow a variation of the absorption coefficient of the laser light in the drop by seven orders of magnitude. The excitation source is a Q-switched Nd:YAG laser at its frequency-doubled wavelength emitting nanosecond pulses with energy densities above the local vaporization threshold. The absorption of the laser energy leads to a large-scale liquid motion at timescales that are separated by several orders of magnitude, which we spatiotemporally resolve by a combination of ultra-high-speed and stroboscopic high-resolution imaging in two orthogonal views. Surprisingly, the large-scale liquid motion at upon laser impact is completely controlled by the spatial energy distribution obtained by a precise beam-shaping technique. The apparatus demonstrates the potential for accurate and quantitative studies of laser-matter interactions.Comment: Submitted to Review of Scientific Instrument

    Microbubble shape oscillations excited through ultrasonic parametric driving\ud

    Get PDF
    An air bubble driven by ultrasound can become shape-unstable through a parametric instability. We report time-resolved optical observations of shape oscillations (mode n=2 to 6) of micron-sized single air bubbles. The observed mode number n was found to be linearly related to the ambient radius of the bubble. Above the critical driving pressure threshold for shape oscillations, which is minimal at the resonance of the volumetric radial mode, the observed mode number n is independent of the forcing pressure amplitude. The microbubble shape oscillations were also analyzed numerically by introducing a small nonspherical linear perturbation to a Rayleigh-Plesset-type equation, capturing the experimental observations in detail.\ud \u

    Road centre line simplification principles for angular segment analysis

    Get PDF
    Angular segment analysis is one of the most fundamental analyses in space syntax practice that helps understand movement, land-use and other socio-economic patterns. It was initially applied in axial segment maps and later was used in road centre line maps as an attempt to overcome the 'segment problem' (Turner, 2005). Furthermore, the growing need to examine large urban systems has led to the wide use of road centre line maps instead of the previously hand-drawn axial maps. However, this transition to such datasets has lacked systematic studies on what is required to convert a road centre line map into a segment map, in order to produce reliable results of the angular segment analysis. To date, no consensual methodology has been developed within the space syntax community. This paper attempts to clarify what a road centre line segment represents spatially and suggests principles and rules to simplify a road centre line map to a segment map. Based on previous experience, the simplification mostly relies on the following two principles: reducing the number of nodes in the dual graph representation of a street network; optimising the angular change between adjacent nodes of the dual graph when space allows it. In addition to the above general principles, we discuss rules for special and complex cases, e.g. roundabouts, underpasses, bridges etc. To evaluate these rules and principles comparisons are carried out between traditional axial and RCL unsimplified and simplified segment maps, to develop a good understanding of how changes in dual graph representation of a street network can affect space syntax measure of 'choice'. Correlations of angular segment choice values are performed in order to evaluate which simplification technique can approximate better the axial representation of actual human activity. The results show that using a raw road centre line data set raises several inconsistencies in the analysis results, and the progressive application of the different simplification techniques brings these results closer to those of a traditional axial segment map, and thus to a better representation of socio-economic activity. The purpose of simplification is to minimise inconsistencies to ensure maximum accuracy in the results of angular segment analysis

    The Bouncing Jet: A Newtonian Liquid Rebounding off a Free Surface

    Get PDF
    We find that a liquid jet can bounce off a bath of the same liquid if the bath is moving horizontally with respect to the jet. Previous observations of jets rebounding off a bath (e.g. Kaye effect) have been reported only for non-Newtonian fluids, while we observe bouncing jets in a variety of Newtonian fluids, including mineral oil poured by hand. A thin layer of air separates the bouncing jet from the bath, and the relative motion replenishes the film of air. Jets with one or two bounces are stable for a range of viscosity, jet flow rate and velocity, and bath velocity. The bouncing phenomenon exhibits hysteresis and multiple steady states.Comment: 9 pages, 7 figures. submitted to Physical Review

    Perspectieven van ozonbehandelingen ter bestrijding van schadelijke organismen op plantaardig uitgangsmateriaal : Literatuurstudie

    Get PDF
    Om een inzicht te krijgen in de mogelijkheden die er eventueel zijn om met behulp van ozon de kwaliteit van biologisch uitgangsmateriaal te verbeteren is een beperkte literatuurstudie uitgevoerd. Uit het literatuuronderzoek komt naar voren dat ozonbehandelingen een hulpmiddel kunnen zijn om de aantasting van schimmels, bacteriën en insecten te beperken.Per combinatie van het type uitgangsmateriaal en het schadelijke organisme zal gezocht moeten worden naar een optimale toepassing waarbij enerzijds het bestrijdingseffect voldoende is en anderzijds de schade aan het uitgangsmateriaal beperkt blijft. Met een aantal organisaties zijn contacten gelegd over de toelaatbaarheid van ozonbehandelingen

    Microuidics control the ballistic energy of thermocavitation liquid jets for needle-free injections

    Get PDF
    Illuminating a water solution with a focused continuous wave laser produces a strong local heating of the liquid that leads to the nucleation of bubbles, also known as thermocavitation. During the growth of the bubble, the surrounding liquid is expelled from the constraining microfluidic channel through a nozzle, creating a jet. The characteristics of the resulting liquid jet was imaged using ultra-fast imaging techniques. Here, we provide a phenomenological description of the jet shapes and velocities, and compare them with a Boundary Integral numerical model. We define the parameter regime, varying jet speed, taper geometry and liquid volume, for optimal printing, injection and spray applications. These results are important for the design of energy-efficient needle-free jet injectors based on microfluidic thermocavitation
    corecore