3,989 research outputs found

    Strategic Decision Making and the Dynamics of Government Debt

    Get PDF
    National Debt;Deficit Spending;Welfare;Models

    A discrete chemo-dynamical model of the dwarf spheroidal galaxy Sculptor: mass profile, velocity anisotropy and internal rotation

    Get PDF
    We present a new discrete chemo-dynamical axisymmetric modeling technique, which we apply to the dwarf spheroidal galaxy Sculptor. The major improvement over previous Jeans models is that realistic chemical distributions are included directly in the dynamical modelling of the discrete data. This avoids loss of information due to spatial binning and eliminates the need for hard cuts to remove contaminants and to separate stars based on their chemical properties. Using a combined likelihood in position, metallicity and kinematics, we find that our models naturally separate Sculptor stars into a metal-rich and a metal-poor population. Allowing for non-spherical symmetry, our approach provides a central slope of the dark matter density of γ=0.5±0.3\gamma = 0.5 \pm 0.3. The metal-rich population is nearly isotropic (with βrred=0.0±0.1\beta_r^{red} = 0.0\pm0.1) while the metal-poor population is tangentially anisotropic (with βrblue=−0.2±0.1\beta_r^{blue} = -0.2\pm0.1) around the half light radius of 0.260.26 kpc. A weak internal rotation of the metal-rich population is revealed with vmax/σ0=0.15±0.15v_{max}/\sigma_0 = 0.15 \pm 0.15. We run tests using mock data to show that a discrete dataset with ∼6000\sim 6000 stars is required to distinguish between a core (γ=0\gamma = 0) and cusp (γ=1\gamma = 1), and to constrain the possible internal rotation to better than 1 σ1\,\sigma confidence with our model. We conclude that our discrete chemo-dynamical modelling technique provides a flexible and powerful tool to robustly constrain the internal dynamics of multiple populations, and the total mass distribution in a stellar system.Comment: Accepted by MNRA

    A kinetic study of the complete oxidation of ethene, propane and their mixtures on a Pd/Al2O3 catalyst

    Get PDF
    The complete oxidation of ethene and propane as individual hydrocarbons and of their mixtures on a Pd/Al2O3 catalyst has been studied using an internal recycle reactor. The pressure was varied from 1.6¿5 bar and the temperature from 180¿220 °C for ethene oxidation and from 280¿330 °C for propane oxidation. The maximum hydrocarbon concentration was ca. 3000 ppm or 0.3vol.%. The effect of the reaction products and the co-educt on the kinetics was investigated and it is shown that whereas water significantly retards the oxidation, the influence of CO2 is negligible. Propane oxidation is inhibited by ethene. Such inhibition can only partly be explained by the additional water formed due to the combustion of ethene. The conversions in these experiments studied ranged between 70% and 90% for ethene and between 15% and 30% for propane, respectively. Four different rate expressions have been tested bearing in mind that the influence of water must be taken into account in any adequate description of the experimental data. The best-fitting rate expression described the experimental data to within an average error of 17% for ethene and 13% for propane, respectively. A comparison of the results with data from dynamic experiments showed a reasonable agreement

    Triaxial orbit-based modelling of the Milky Way Nuclear Star Cluster

    Get PDF
    We construct triaxial dynamical models for the Milky Way nuclear star cluster using Schwarzschild's orbit superposition technique. We fit the stellar kinematic maps presented in Feldmeier et al. (2014). The models are used to constrain the supermassive black hole mass M_BH, dynamical mass-to-light ratio M/L, and the intrinsic shape of the cluster. Our best-fitting model has M_BH = (3.0 +1.1 -1.3)x10^6 M_sun, M/L = (0.90 +0.76 -0.08) M_sun/L_{sun,4.5micron}, and a compression of the cluster along the line-of-sight. Our results are in agreement with the direct measurement of the supermassive black hole mass using the motion of stars on Keplerian orbits. The mass-to-light ratio is consistent with stellar population studies of other galaxies in the mid-infrared. It is possible that we underestimate M_BH and overestimate the cluster's triaxiality due to observational effects. The spatially semi-resolved kinematic data and extinction within the nuclear star cluster bias the observations to the near side of the cluster, and may appear as a compression of the nuclear star cluster along the line-of-sight. We derive a total dynamical mass for the Milky Way nuclear star cluster of M_MWNSC = (2.1 +-0.7)x10^7 M_sun within a sphere with radius r = 2 x r_eff = 8.4 pc. The best-fitting model is tangentially anisotropic in the central r = 0.5-2 pc of the nuclear star cluster, but close to isotropic at larger radii. Our triaxial models are able to recover complex kinematic substructures in the velocity map.Comment: 14 pages, 10 figures. Accepted for publication in MNRA

    Spatial inefficiency of MaxWeight scheduling

    Get PDF
    MaxWeight scheduling has gained enormous popularity as a powerful paradigm for achieving queue stability and maximum throughput in a wide variety of scenarios. The maximum-stability guarantees however rely on the fundamental premise that the system consists of a fixed set of flows with stationary ergodic traffic processes. In the present paper we examine networks where the population of active flows varies over time, as flows eventually end while new flows occasionally start. We show that MaxWeight policies may fail to provide maximum stability due to persistent inefficient spatial reuse. The intuitive explanation is that these policies tend to serve flows with large backlogs, even when the resulting spatial reuse is not particularly efficient, and fail to exploit maximum spatial reuse patterns involving flows with smaller backlogs. These results indicate that instability of MaxWeight scheduling can occur due to spatial inefficiency in networks with fixed transmission rates, which is fundamentally different from the inability to fully exploit time-varying rates shown in prior work. We discuss how the potential instability effects can be countered by spatial traffic aggregation, and describe some of the associated challenges and performance trade-offs

    MRK 1216 & NGC 1277 - An orbit-based dynamical analysis of compact, high velocity dispersion galaxies

    Get PDF
    We present a dynamical analysis to infer the structural parameters and properties of the two nearby, compact, high velocity dispersion galaxies MRK1216 & NGC1277. Combining deep HST imaging, wide-field IFU stellar kinematics, and complementary long-slit spectroscopic data out to 3 R_e, we construct orbit-based models to constrain their black hole masses, dark matter content and stellar mass-to-light ratios. We obtain a black hole mass of log(Mbh/Msun) = 10.1(+0.1/-0.2) for NGC1277 and an upper limit of log(Mbh/Msun) = 10.0 for MRK1216, within 99.7 per cent confidence. The stellar mass-to-light ratios span a range of Upsilon_V = 6.5(+1.5/-1.5) in NGC1277 and Upsilon_H = 1.8(+0.5/-0.8) in MRK1216 and are in good agreement with SSP models of a single power-law Salpeter IMF. Even though our models do not place strong constraints on the dark halo parameters, they suggest that dark matter is a necessary ingredient in MRK1216, with a dark matter contribution of 22(+30/-20) per cent to the total mass budget within 1 R_e. NGC1277, on the other hand, can be reproduced without the need for a dark halo, and a maximal dark matter fraction of 13 per cent within the same radial extent. In addition, we investigate the orbital structures of both galaxies, which are rotationally supported and consistent with photometric multi-S\'ersic decompositions, indicating that these compact objects do not host classical, non-rotating bulges formed during recent (z <= 2) dissipative events or through violent relaxation. Finally, both MRK 1216 and NGC 1277 are anisotropic, with a global anisotropy parameter delta of 0.33 and 0.58, respectively. While MRK 1216 follows the trend of fast-rotating, oblate galaxies with a flattened velocity dispersion tensor in the meridional plane of the order of beta_z = delta, NGC 1277 is highly tangentially anisotropic and seems to belong kinematically to a distinct class of objects.Comment: 27 pages, 15 figures and 4 tables. Accepted for publication in MNRA

    Formation of central massive objects via tidal compression

    Full text link
    For a density that is not too sharply peaked towards the center, the local tidal field becomes compressive in all three directions. Available gas can then collapse and form a cluster of stars in the center, including or even being dominated by a central black hole. We show that for a wide range of (deprojected) Sersic profiles in a spherical potential, the tidal forces are compressive within a region which encloses most of the corresponding light of observed nuclear clusters in both late-type and early-type galaxies. In such models, tidal forces become disruptive nearly everywhere for relatively large Sersic indices n >= 3.5. We also show that the mass of a central massive object (CMO) required to remove all radial compressive tidal forces scales linearly with the mass of the host galaxy. If CMOs formed in (progenitor) galaxies with n ~ 1, we predict a mass fraction of ~ 0.1-0.5%, consistent with observations of nuclear clusters and super-massive black holes. While we find that tidal compression possibly drives the formation of CMOs in galaxies, beyond the central regions and on larger scales in clusters disruptive tidal forces might contribute to prevent gas from cooling.Comment: 19 pages, 4 figures. Accepted for publication in ApJ. High resolution version available at http://www-obs.univ-lyon1.fr/labo/perso/eric.emsellem/preprint
    • …
    corecore