7,562 research outputs found
On the problem of mass-dependence of the two-point function of the real scalar free massive field on the light cone
We investigate the generally assumed inconsistency in light cone quantum
field theory that the restriction of a massive, real, scalar, free field to the
nullplane  is independent of mass \cite{LKS}, but the
restriction of the two-point function depends on it (see, e.g., \cite{NakYam77,
Yam97}). We resolve this inconsistency by showing that the two-point function
has no canonical restriction to  in the sense of distribution theory.
Only the so-called tame restriction of the two-point function exists which we
have introduced in \cite{Ull04sub}. Furthermore, we show that this tame
restriction is indeed independent of mass. Hence the inconsistency appears only
by the erroneous assumption that the two-point function would have a
(canonical) restriction to .Comment: 10 pages, 2 figure
A minimal model for excitons within time-dependent density-functional theory
The accurate description of the optical spectra of insulators and
semiconductors remains an important challenge for time-dependent
density-functional theory (TDDFT). Evidence has been given in the literature
that TDDFT can produce bound as well as continuum excitons for specific
systems, but there are still many unresolved basic questions concerning the
role of dynamical exchange and correlation (xc). In particular, the role of the
long spatial range and the frequency dependence of the xc kernel 
for excitonic binding are still not very well explored. We present a minimal
model for excitons in TDDFT, consisting of two bands from a one-dimensional
Kronig-Penney model and simple approximate xc kernels, which allows us to
address these questions in a transparent manner. Depending on the system, it is
found that adiabatic xc kernels can produce a single bound exciton, and
sometimes two bound excitons, where the long spatial range of  is
not a necessary condition. It is shown how the Wannier model, featuring an
effective electron-hole interaction, emerges from TDDFT. The collective,
many-body nature of excitons is explicitly demonstrated.Comment: 12 pages, 11 figure
Radio Observations of the Region around the Pulsar Wind Nebula HESS J1303-631 with ATCA
Radio observations of the region surrounding PSR J1301-6305 at 5.5 GHz and
7.5 GHz were conducted with ATCA on September 5th, 2013. They were dedicated to
the search of the radio counterpart of the evolved pulsar wind nebula HESS
J1303-631, detected in X-rays and GeV-TeV gamma-rays. The collected data do not
reveal any significant extended emission associated with PSR J1301-6305. In
addition, archival 1.384 GHz and 2.368 GHz data do not show any evidence for a
radio counterpart of HESS J1303-631. Archival 1.384 GHz observations reveal a
detection of an extended structure centred at an angular distance of 190 from
the pulsar. This extended structure might be a Supernova remnant (SNR) and a
potential birth place of PSR J1301-6305. The implications of the lack of radio
counterpart of HESS J1303-631 on the understanding of the nature of the PWN are
discussed.Comment: 7 pages, 4 figures, 2 tables, accepted for publication in A&
Response properties of III-V dilute magnetic semiconductors: interplay of disorder, dynamical electron-electron interactions and band-structure effects
A theory of the electronic response in spin and charge disordered media is
developed with the particular aim to describe III-V dilute magnetic
semiconductors like GaMnAs. The theory combines a detailed k.p description of
the valence band, in which the itinerant carriers are assumed to reside, with
first-principles calculations of disorder contributions using an
equation-of-motion approach for the current response function. A fully dynamic
treatment of electron-electron interaction is achieved by means of
time-dependent density functional theory. It is found that collective
excitations within the valence band significantly increase the carrier
relaxation rate by providing effective channels for momentum relaxation. This
modification of the relaxation rate, however, only has a minor impact on the
infrared optical conductivity in GaMnAs, which is mostly determined by the
details of the valence band structure and found to be in agreement with
experiment.Comment: 15 pages, 9 figure
Semiclassical model for calculating fully differential ionization cross sections of the H molecule
Fully differential cross sections are calculated for the ionization of H
by fast charged projectiles using a semiclassical model developed previously
for the ionization of atoms. The method is tested in case of 4 keV electron and
6 MeV proton projectiles. The obtained results show good agreement with the
available experimental data. Interference effects due to the two-center
character of the target are also observed and analyzed.Comment: 11 pages, 4 figure
Momentum space tomographic imaging of photoelectrons
We apply tomography, a general method for reconstructing 3-D distributions
from multiple projections, to reconstruct the momentum distribution of
electrons produced via strong field photoionization. The projections are
obtained by rotating the electron distribution via the polarization of the
ionizing laser beam and recording a momentum spectrum at each angle with a 2-D
velocity map imaging spectrometer. For linearly polarized light the tomographic
reconstruction agrees with the distribution obtained using an Abel inversion.
Electron tomography, which can be applied to any polarization, will simplify
the technology of electron imaging. The method can be directly generalized to
other charged particles.Comment: Accepted by J. Phys. 
Differential cross sections for K-shell ionization by electron or positron impact
We have investigated the universal scaling behavior of differential cross
sections for the single K-shell ionization by electron or positron impact. The
study is performed within the framework of non-relativistic perturbation
theory, taking into account the one-photon exchange diagrams. In the case of
low-energy positron scattering, the doubly differential cross section exhibits
prominent interference oscillations. The results obtained are valid for
arbitrary atomic targets with moderate values of nuclear charge number Z.Comment: 13 pages, 7 figure
Time-dependent density-functional approach for exciton binding energies
URL:http://link.aps.org/doi/10.1103/PhysRevB.79.233201
DOI:10.1103/PhysRevB.79.233201Optical processes in insulators and semiconductors, including excitonic effects, can be described in principle exactly using time-dependent density-functional theory (TDDFT). Starting from a linearization of the TDDFT semiconductor Bloch equations in a two-band model, we derive a simple formalism for calculating exciton binding energies. This formalism leads to a generalization of the standard Wannier equation for excitons, featuring a nonlocal effective electron-hole interaction determined by long-range and dynamical exchange-correlation (XC) effects. We calculate exciton binding energies in several direct-gap semiconductors using exchange-only and model XC kernels.This work was supported by Research Corporation and by NSF under Grant No. DMR-0553485. We thank Angel Rubio, Lucia Reining, and Claudia Ambrosch-Draxl for useful discussions
Time-dependent density-matrix functional theory for biexcitonic phenomena
We formulate a time-dependent density-matrix functional theory (TDDMFT)
approach for higher-order correlation effects like biexcitons in optical
processes in solids based on the reduced two-particle density-matrix formalism
within the normal orbital representation. A TDDMFT version of the Schr\"odinger
equation for biexcitons in terms of one- and two-body reduced density matrices
is derived, which leads to finite biexcitonic binding energies already with an
adiabatic approximation. Biexcitonic binding energies for several bulk
semiconductors are calculated using a contact biexciton model
Semiclassical description of the kinematically complete experiments
Based on the semiclassical, impact parameter method a theoretical model is
constructed to calculate totally differential cross sections for single
ionization of helium by impact with fast C ions. Good agreement with the
experiment is achieved in the scattering plane, while in the perpendicular
plane a similar structure to that observed experimentally is obtained. The
contribution of different partial waves to the cross section is also
investigated.Comment: 9 pages, 6 figure
- …
