62 research outputs found

    On the maximum size of an anti-chain of linearly separable sets and convex pseudo-discs

    Full text link
    We show that the maximum cardinality of an anti-chain composed of intersections of a given set of n points in the plane with half-planes is close to quadratic in n. We approach this problem by establishing the equivalence with the problem of the maximum monotone path in an arrangement of n lines. For a related problem on antichains in families of convex pseudo-discs we can establish the precise asymptotic bound: it is quadratic in n. The sets in such a family are characterized as intersections of a given set of n points with convex sets, such that the difference between the convex hulls of any two sets is nonempty and connected.Comment: 10 pages, 3 figures. revised version correctly attributes the idea of Section 3 to Tverberg; and replaced k-sets by "linearly separable sets" in the paper and the title. Accepted for publication in Israel Journal of Mathematic

    Analogues of the central point theorem for families with dd-intersection property in Rd\mathbb R^d

    Full text link
    In this paper we consider families of compact convex sets in Rd\mathbb R^d such that any subfamily of size at most dd has a nonempty intersection. We prove some analogues of the central point theorem and Tverberg's theorem for such families

    Halving Balls in Deterministic Linear Time

    Full text link
    Let \D be a set of nn pairwise disjoint unit balls in Rd\R^d and PP the set of their center points. A hyperplane \Hy is an \emph{mm-separator} for \D if each closed halfspace bounded by \Hy contains at least mm points from PP. This generalizes the notion of halving hyperplanes, which correspond to n/2n/2-separators. The analogous notion for point sets has been well studied. Separators have various applications, for instance, in divide-and-conquer schemes. In such a scheme any ball that is intersected by the separating hyperplane may still interact with both sides of the partition. Therefore it is desirable that the separating hyperplane intersects a small number of balls only. We present three deterministic algorithms to bisect or approximately bisect a given set of disjoint unit balls by a hyperplane: Firstly, we present a simple linear-time algorithm to construct an αn\alpha n-separator for balls in Rd\R^d, for any 0<α<1/20<\alpha<1/2, that intersects at most cn(d1)/dcn^{(d-1)/d} balls, for some constant cc that depends on dd and α\alpha. The number of intersected balls is best possible up to the constant cc. Secondly, we present a near-linear time algorithm to construct an (n/2o(n))(n/2-o(n))-separator in Rd\R^d that intersects o(n)o(n) balls. Finally, we give a linear-time algorithm to construct a halving line in R2\R^2 that intersects O(n(5/6)+ϵ)O(n^{(5/6)+\epsilon}) disks. Our results improve the runtime of a disk sliding algorithm by Bereg, Dumitrescu and Pach. In addition, our results improve and derandomize an algorithm to construct a space decomposition used by L{\"o}ffler and Mulzer to construct an onion (convex layer) decomposition for imprecise points (any point resides at an unknown location within a given disk)

    Notes about the Caratheodory number

    Full text link
    In this paper we give sufficient conditions for a compactum in Rn\mathbb R^n to have Carath\'{e}odory number less than n+1n+1, generalizing an old result of Fenchel. Then we prove the corresponding versions of the colorful Carath\'{e}odory theorem and give a Tverberg type theorem for families of convex compacta

    Some functional equations related to the characterizations of information measures and their stability

    Full text link
    The main purpose of this paper is to investigate the stability problem of some functional equations that appear in the characterization problem of information measures.Comment: 36 pages. arXiv admin note: text overlap with arXiv:1307.0657, arXiv:1307.0631, arXiv:1307.0664, arXiv:1307.065

    Trustworthy journalism through AI

    Get PDF
    Quality journalism has become more important than ever due to the need for quality and trustworthy media outlets that can provide accurate information to the public and help to address and counterbalance the wide and rapid spread of disinformation. At the same time, quality journalism is under pressure due to loss of revenue and competition from alternative information providers. This vision paper discusses how recent advances in Artificial Intelligence (AI), and in Machine Learning (ML) in particular, can be harnessed to support efficient production of high-quality journalism. From a news consumer perspective, the key parameter here concerns the degree of trust that is engendered by quality news production. For this reason, the paper will discuss how AI techniques can be applied to all aspects of news, at all stages of its production cycle, to increase trust

    Bounding Helly numbers via Betti numbers

    Get PDF
    We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers bb and dd there exists an integer h(b,d)h(b,d) such that the following holds. If F\mathcal F is a finite family of subsets of Rd\mathbb R^d such that β~i(G)b\tilde\beta_i\left(\bigcap\mathcal G\right) \le b for any GF\mathcal G \subsetneq \mathcal F and every 0id/210 \le i \le \lceil d/2 \rceil-1 then F\mathcal F has Helly number at most h(b,d)h(b,d). Here β~i\tilde\beta_i denotes the reduced Z2\mathbb Z_2-Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these d/2\lceil d/2 \rceil first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex KK, some well-behaved chain map C(K)C(Rd)C_*(K) \to C_*(\mathbb R^d).Comment: 29 pages, 8 figure
    corecore