62 research outputs found

    Improving Hydrologic Predictions of Distributed Watershed Model via Uncertainty Quantification of Evapotranspiration Methods

    Get PDF
    Successful initialization and accurate estimation of evapotranspiration (ET) in the coastal plain landscapes are crucial for the prediction of hydrologic variables including streamflow, surficial aquifer lost and infiltration. The aim of this study is to examine the ability of Soil and Water Assessment Tool (SWAT) to accurately represent the characterization of three potential ET methods (Priestley-Taylor (P-T), Penman–Monteith (P-M) and Hargreaves (HG)) using the Sequential Uncertainty FItting (SUFI-2) algorithm during 2003-2005 and 2006-2007 as calibration and validation intervals. The study area was the Waccamaw River watershed, a low-gradient coastal plain watershed in the southeastern US. The results indicated that in estimating ET for a coastal plain landscape, P-T method bracketed more than 75% of daily streamflow during calibration period while both P-M and HG bracketed 57% and 69% of measured streamflow during calibration period, respectively. Model daily performance using P-T method was “very good” (calibration NSE = 0.77; validation NSE=0.90) but only “satisfactory” (P-M calibration NSE = 0.55; HG calibration NSE =0.61) to “good” (P-M validation NSE=0.75; HG validation NSE=0.70) in P-M and HG methods. The prediction mean square error (MSE) for P-T method was comparably low (57.88 and 325.68) compared to P-M (68.34 and 635.95) and HG (69.99 and 551.99) methods at upstream and downstream outlets, respectively. This result suggests that radiation based ET method performed significant results in forested wetland dominated ecosystem with wet and humid surfaces. Based on the water balance analysis, only about 21.2% of flow loss was consumed via stream evaporation and floodplains evapotranspiration, indicating that 78.8% of the loss within the entire study area represented land ET and shallow aquifer recharge. Furthermore, uncertainty quantification revealed that low flows are sensitive to the changes in ET process in dry period and at the beginning of the wet season, but insensitive at the end of the wet season due to nonlinear control of coastal plain soil on water movement. In particular, under conditions of so-called “deep uncertainty” in the coastal plain landscapes, uncertainty quantification of ET methods can lead to the identification of optimal land and water management strategies in the southeastern ecosystems

    NIDIS Carolinas Drought Early Warning Pilot Program

    Get PDF
    2012 S.C. Water Resources Conference - Exploring Opportunities for Collaborative Water Research, Policy and Managemen

    Advocating For Science: Amici Curiae Brief Of Wetland And Water Scientists In Support Of The Clean Water Rule

    Get PDF
    The Trump administration has proposed replacing the Clean Water Rule, a 2015 regulation that defined the statutory term waters of the United States to clarify the geographic jurisdiction of the Clean Water Act. Since its promulgation, the Clean Water Rule has been subjected to numerous judicial challenges. We submitted an amici curiae brief to the United States Court of Appeals for the Sixth Circuit, explaining why the Clean Water Rule, and its definition of waters of the United States, is scientifically sound. The definition of waters of the United States is a legal determination informed by science. The best available science supports the Clean Water Rule\u27s categorical treatment of tributaries because compelling scientific evidence demonstrates that tributaries significantly affect the chemical, physical, and biological integrity of traditional navigable waters (primary waters). Similarly, the best available science supports the Clean Water Rule\u27s categorical treatment of adjacent waters based on geographic proximity. Compelling scientific evidence demonstrates that waters within 100ft of an ordinary high water mark (OHWM) significantly affect the chemical, physical, and biological integrity of primary waters, as do waters within 100-year floodplains and waters within 1500ft of high tide lines of tidally influenced primary waters or OHWMs of the Great Lakes. This review article is adapted from that amici brief

    Investigating falls in adults with intellectual disability living in community settings and their experiences of post-fall care services: Protocol for a prospective observational cohort study

    Get PDF
    Background: Falls among older adults with intellectual disability (ID) are recognised as a serious health problem potentially resulting in reduced health-related quality of life and premature placement in residential care. However there are limited studies that have investigated this problem and thus falls rates among older adults with ID remain uncertain. Furthermore, people with ID rely heavily on familial and professional care support to address health problems, such as after having a fall. No studies have explored the post-fall care that people with ID receive. Method: This research will be carried out in two phases using a convergent mixed methods design. The aim of Phase 1 is to estimate the falls rate by prospectively observing a cohort of older adults (≥ 35 years) with ID (n = 90) for six months. Phase 1 will be conducted according to STROBE guidelines. In Phase 2, participants from Phase 1 who have experienced a fall(s) will be asked to participate in a semi-structured interview to explore their post-fall experience. Discussion: This study will determine the rate of falls among older adults with ID living in community based settings, which will assist to identify the extent of this problem. Data collected from the study will also aid in understanding the circumstance of falls and related falls risk factors in this cohort. This will include exploring any barriers that older adults with ID may encounter when seeking or undertaking recommended post-fall care advice. Findings from this research will potentially inform future development of falls prevention services for older adults with ID. This study has been approved by the University Human Research Ethics Committee. Trial registration: The protocol for this study is registered with the Australian New Zealand Clinical Trial Registry (ACTRN12615000926538) on 7 September 2015. www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=368990&isReview=tru

    Environmental Enhancement Through Agriculture

    No full text

    Wetlands In Danger : a World Conservation Atlas

    No full text

    Improving the Robustness of Uncertainty Algorithms in Quantification of Uncertainty in Water Balance Forecasting

    Get PDF
    2014 S.C. Water Resources Conference - Informing Strategic Water Planning to Address Natural Resource, Community and Economic Challenge
    • …
    corecore