5,548 research outputs found

    Segregation in a fluidized binary granular mixture: Competition between buoyancy and geometric forces

    Full text link
    Starting from the hydrodynamic equations of binary granular mixtures, we derive an evolution equation for the relative velocity of the intruders, which is shown to be coupled to the inertia of the smaller particles. The onset of Brazil-nut segregation is explained as a competition between the buoyancy and geometric forces: the Archimedean buoyancy force, a buoyancy force due to the difference between the energies of two granular species, and two geometric forces, one compressive and the other-one tensile in nature, due to the size-difference. We show that inelastic dissipation strongly affects the phase diagram of the Brazil nut phenomenon and our model is able to explain the experimental results of Breu et al. (PRL, 2003, vol. 90, p. 01402).Comment: 5 pages, 2 figure

    Academy Expands Medical Forensic Care and Response

    Get PDF
    The Alaska Comprehensive Forensic Training Academy, the first of its kind in the nation, trains nurses and health care providers to support victims of interpersonal violence in a trauma-informed manner and to preserve potential evidence and information for future prosecutions

    On the physical origin of the second solar spectrum of the Sc II line at 4247 A

    Full text link
    The peculiar three-peak structure of the linear polarization profile shown in the second solar spectrum by the Ba II line at 4554 A has been interpreted as the result of the different contributions coming from the barium isotopes with and without hyperfine structure (HFS). In the same spectrum, a triple peak polarization signal is also observed in the Sc II line at 4247 A. Scandium has a single stable isotope (^{45}Sc), which shows HFS due to a nuclear spin I=7/2. We investigate the possibility of interpreting the linear polarization profile shown in the second solar spectrum by this Sc II line in terms of HFS. A two-level model atom with HFS is assumed. Adopting an optically thin slab model, the role of atomic polarization and of HFS is investigated, avoiding the complications caused by radiative transfer effects. The slab is assumed to be illuminated from below by the photospheric continuum, and the polarization of the radiation scattered at 90 degrees is investigated. The three-peak structure of the scattering polarization profile observed in this Sc II line cannot be fully explained in terms of HFS. Given the similarities between the Sc II line at 4247 A and the Ba II line at 4554 A, it is not clear why, within the same modeling assumptions, only the three-peak Q/I profile of the barium line can be fully interpreted in terms of HFS. The failure to interpret this Sc II polarization signal raises important questions, whose resolution might lead to significant improvements in our understanding of the second solar spectrum. In particular, if the three-peak structure of the Sc II signal is actually produced by a physical mechanism neglected within the approach considered here, it will be extremely interesting not only to identify this mechanism, but also to understand why it seems to be less important in the case of the barium line.Comment: 8 pages, 8 figures, and 1 table. Accepted for publication in Astronomy and Astrophysic

    Isotropic inelastic and superelastic collisional rates in a multiterm atom

    Full text link
    The spectral line polarization of the radiation emerging from a magnetized astrophysical plasma depends on the state of the atoms within the medium, whose determination requires considering the interactions between the atoms and the magnetic field, between the atoms and photons (radiative transitions), and between the atoms and other material particles (collisional transitions). In applications within the framework of the multiterm model atom (which accounts for quantum interference between magnetic sublevels pertaining either to the same J-level or to different J-levels within the same term) collisional processes are generally neglected when solving the master equation for the atomic density matrix. This is partly due to the lack of experimental data and/or of approximate theoretical expressions for calculating the collisional transfer and relaxation rates (in particular the rates for interference between sublevels pertaining to different J-levels, and the depolarizing rates due to elastic collisions). In this paper we formally define and investigate the transfer and relaxation rates due to isotropic inelastic and superelastic collisions that enter the statistical equilibrium equations of a multiterm atom. Under the hypothesis that the atom-collider interaction can be described by a dipolar operator, we provide expressions that relate the collisional rates for interference between different J-levels to the usual collisional rates for J-level populations. Finally, we apply the general equations to the case of a two-term atom with unpolarized lower term, illustrating the impact of inelastic and superelastic collisions on scattering polarization through radiative transfer calculations in a slab of stellar atmospheric plasma anisotropically illuminated by the photospheric radiation field.Comment: Accepted for publication in Astronomy & Astrophysic

    Theoretical formulation of Doppler redistribution in scattering polarization within the framework of the velocity-space density matrix formalism

    Full text link
    Within the framework of the density matrix theory for the generation and transfer of polarized radiation, velocity density matrix correlations represent an important physical aspect that, however, is often neglected in practical applications by adopting the simplifying approximation of complete redistribution on velocity. In this paper, we present an application of the Non-LTE problem for polarized radiation taking such correlations into account through the velocity-space density matrix formalism. We consider a two-level atom with infinitely sharp upper and lower levels, and we derive the corresponding statistical equilibrium equations neglecting the contribution of velocity-changing collisions. Coupling such equations with the radiative transfer equations for polarized radiation, we derive a set of coupled equations for the velocity-dependent source function. This set of equations is then particularized to the case of a plane-parallel atmosphere. The equations presented in this paper provide a complete and solid description of the physics of pure Doppler redistribution, a phenomenon generally described within the framework of the redistribution matrix formalism. The redistribution matrix corresponding to this problem (generally referred to as R_I) is derived starting from the statistical equilibrium equations for the velocity-space density matrix and from the radiative transfer equations for polarized radiation, thus showing the equivalence of the two approaches.Comment: Accepted for publication in Astronomy & Astrophysic

    On the accuracy of the ALI method for solving the radiative transfer equation

    Full text link
    We solve the integral equation describing the propagation of light in an isothermal plane-parallel atmosphere of optical thickness τ∗\tau^*, adopting a uniform thermalization parameter ϵ\epsilon. The solution given by the ALI method, widely used in the field of stellar atmospheres modelling, is compared to the exact solution. Graphs are given that illustrate the accuracy of the ALI solution as a function of the parameters ϵ\epsilon, τ∗\tau^* and optical depth variable τ\tau.Comment: 7 pages, 11 figures, A&A, accepted 30 July 2003, minor correction

    A Photometric System for Detection of Water and Methane Ices on Kuiper Belt Objects

    Full text link
    We present a new near-infrared photometric system for detection of water ice and methane ice in the solar system. The system consists of two medium-band filters in the K-band region of the near-infrared, which are sensitive to water ice and methane ice, plus continuum observations in the J-band and Y-band. The primary purpose of this system is to distinguish between three basic types of Kuiper Belt Objects (KBOs) --- those rich in water ice, those rich in methane ice, and those with little absorbance. In this work, we present proof-of-concept observations of 51 KBOs using our filter system, 21 of which have never been observed in the near-IR spectroscopically. We show that our custom photometric system is consistent with previous spectroscopic observations while reducing telescope observing time by a factor of 3. We use our filters to identify Haumea collisional family members, which are thought to be collisional remnants of a much larger body and are characterized by large fractions of water ice on their surfaces. We add 2009 YE7 to the Haumea collisional family based on our water ice band observations(J-H2O = -1.03 +/- 0.27) which indicate a high amount of water ice absorption, our calculated proper orbital elements, and the neutral optical colors we measured, V-R = 0.38 +/- 0.04, which are all consistent with the rest of the Haumea family. We identify several objects dynamically similar to Haumea as being distinct from the Haumea family as they do not have water ice on their surfaces. In addition, we find that only the largest KBOs have methane ice, and we find that Haumea itself has significantly less water ice absorption than the smaller Haumea family members. We find no evidence for other families in the Kuiper Belt.Comment: 38 pages, 7 figure

    The Surface of 2003 EL_(61) in the Near-Infrared

    Get PDF
    We report the detection of crystalline water ice on the surface of 2003 EL_(61). Reflectance spectra were collected from the Gemini North telescope in the 1.0 to 2.4 μm wavelength range and from the Keck telescope across the 1.4-2.4 μm wavelength range. The signature of crystalline water ice is obvious in all data collected. Like the surfaces of many outer solar system bodies, the surface of 2003 EL_(61) is rich in crystalline water ice, which is energetically less favored than amorphous water ice at low temperatures, suggesting that resurfacing processes may be taking place. The near-infrared color of the object is much bluer than a pure water ice model. Adding a near-infrared blue component such as hydrogen cyanide or phyllosilicate clays improves the fit considerably, with hydrogen cyanide providing the greatest improvement. The addition of hydrated tholins and bitumens also improves the fit, but is inconsistent with the neutral V - J reflectance of 2003 EL_(61). A small decrease in reflectance beyond 2.3 μm may be attributable to cyanide salts. Overall, the reflected light from 2003 EL_(61) is best fit by a model of 2/3-4/5 pure crystalline water ice and 1/3-1/5 near-infrared blue component such as hydrogen cyanide or kaolinite. The surface of 2003 EL_(61) is unlikely to be covered by significant amounts of dark material such as carbon black, as our pure ice models reproduce published albedo estimates derived from the spin state of 2003 EL_(61)
    • …
    corecore