4,816 research outputs found

    See-Saw Energy Scale and the LSND Anomaly

    Full text link
    The most general, renormalizable Lagrangian that includes massive neutrinos contains ``right-handed neutrino'' Majorana masses of order M. While there are prejudices in favor of M much larger than the weak scale, virtually nothing is known about the magnitude of M. I argue that the LSND anomaly provides, currently, the only experimental hint: M around 1 eV. If this is the case, the LSND mixing angles are functions of the active neutrino masses and mixing and, remarkably, adequate fits to all data can be naturally obtained. I also discuss consequences of this ``eV-seesaw'' for supernova neutrino oscillations, tritium beta-decay, neutrinoless double-beta decay, and cosmology.Comment: revtex, 4 pages, no figure

    Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy

    Full text link
    Observationally, supernovae (SNe) are divided into subclasses pertaining to their distinct characteristics. This diversity reflects the diversity in the progenitor stars. It is not entirely clear how different evolutionary paths leading massive stars to become a SN are governed by fundamental parameters such as progenitor initial mass and metallicity. This paper places constraints on progenitor initial mass and metallicity in distinct core-collapse SN subclasses, through a study of the parent stellar populations at the explosion sites. Integral field spectroscopy (IFS) of 83 nearby SN explosion sites with a median distance of 18 Mpc has been collected and analysed, enabling detection and spectral extraction of the parent stellar population of SN progenitors. From the parent stellar population spectrum, the initial mass and metallicity of the coeval progenitor are derived by means of comparison to simple stellar population models and strong-line methods. Additionally, near-infrared IFS was employed to characterise the star formation history at the explosion sites. No significant metallicity differences are observed among distinct SN types. The typical progenitor mass is found to be highest for SN Ic, followed by type Ib, then types IIb and II. SN IIn is the least associated with young stellar populations and thus massive progenitors. However, statistically significant differences in progenitor initial mass are observed only when comparing SNe IIn with other subclasses. Stripped-envelope SN progenitors with initial mass estimate lower than 25~MM_\odot are found; these are thought to be the result of binary progenitors. Confirming previous studies, these results support the notion that core-collapse SN progenitors cannot arise from single-star channel only, and both single and binary channels are at play in the production of core-collapse SNe. [ABRIDGED]Comment: 18 pages, 10 figures, accepted to A&

    Low-temperature magnetism in the honeycomb systems SrLn2O4

    Full text link
    Recent progress in the understanding of the complex magnetic properties of the family of rare-earth strontium oxides, SrLn2O4, is reviewed. These compounds consisting of hexagons and triangles are affected by geometrical frustration and therefore exhibit its characteristic features, such as a significant reduction of magnetic ordering temperatures and complex phase diagrams in an applied field. Some of the observed features appear to be rather remarkable even in the context of the unusual behavior associated with geometrically frustrated magnetic systems. Of particular interest is the coexistence at the lowest temperature of different magnetic structures (exhibiting either long or short-range order) characterized by different propagation vectors in materials without significant chemical or structural disorder.Comment: Review Articl

    Shear flow effects on phase separation of entangled polymer blends

    Get PDF
    We introduce an entanglement model mixing rule for stress relaxation in a polymer blend to a modified Cahn-Hilliard equation of motion for concentration fluctuations in the presence of shear flow. Such an approach predicts both shear-induced mixing and demixing, depending on the relative relaxation times and plateau moduli of the two components

    Monomer dynamics of a wormlike chain

    Full text link
    We derive the stochastic equations of motion for a tracer that is tightly attached to a semiflexible polymer and confined or agitated by an externally controlled potential. The generalised Langevin equation, the power spectrum, and the mean-square displacement for the tracer dynamics are explicitly constructed from the microscopic equations of motion for a weakly bending wormlike chain by a systematic coarse-graining procedure. Our accurate analytical expressions should provide a convenient starting point for further theoretical developments and for the analysis of various single-molecule experiments and of protein shape fluctuations.Comment: 6 pages, 4 figure

    Interfacial tension of the isotropic--nematic interface in suspensions of soft spherocylinders

    Get PDF
    The isotropic to nematic transition in a system of soft spherocylinders is studied by means of grand canonical Monte Carlo simulations. The probability distribution of the particle density is used to determine the coexistence density of the isotropic and the nematic phases. The distributions are also used to compute the interfacial tension of the isotropic--nematic interface, including an analysis of finite size effects. Our results confirm that the Onsager limit is not recovered until for very large elongation, exceeding at least L/D=40, with L the spherocylinder length and D the diameter. For smaller elongation, we find that the interfacial tension increases with increasing L/D, in agreement with theoretical predictions.Comment: 8 pages, 7 figures, and also 1 tabl

    Force-Extension Relation and Plateau Modulus for Wormlike Chains

    Full text link
    We derive the linear force-extension relation for a wormlike chain of arbitrary stiffness including entropy elasticity, bending and thermodynamic buckling. From this we infer the plateau modulus G0G^0 of an isotropic entangled solution of wormlike chains. The entanglement length LeL_e is expressed in terms of the characteristic network parameters for three different scaling regimes in the entangled phase. The entanglement transition and the concentration dependence of G0G^0 are analyzed. Finally we compare our findings with experimental data.Comment: 5 pages, 1 eps-figure, to appear in PR

    Persistence in the Voter model: continuum reaction-diffusion approach

    Full text link
    We investigate the persistence probability in the Voter model for dimensions d\geq 2. This is achieved by mapping the Voter model onto a continuum reaction-diffusion system. Using path integral methods, we compute the persistence probability r(q,t), where q is the number of ``opinions'' in the original Voter model. We find r(q,t)\sim exp[-f_2(q)(ln t)^2] in d=2; r(q,t)\sim exp[-f_d(q)t^{(d-2)/2}] for 2<d<4; r(q,t)\sim exp[-f_4(q)t/ln t] in d=4; and r(q,t)\sim exp[-f_d(q)t] for d>4. The results of our analysis are checked by Monte Carlo simulations.Comment: 10 pages, 3 figures, Latex, submitted to J. Phys. A (letters

    Polymer translocation through a nanopore - a showcase of anomalous diffusion

    Full text link
    The translocation dynamics of a polymer chain through a nanopore in the absence of an external driving force is analyzed by means of scaling arguments, fractional calculus, and computer simulations. The problem at hand is mapped on a one dimensional {\em anomalous} diffusion process in terms of reaction coordinate ss (i.e. the translocated number of segments at time tt) and shown to be governed by an universal exponent α=2/(2ν+2γ1)\alpha = 2/(2\nu+2-\gamma_1) whose value is nearly the same in two- and three-dimensions. The process is described by a {\em fractional} diffusion equation which is solved exactly in the interval 0<s<N0 <s < N with appropriate boundary and initial conditions. The solution gives the probability distribution of translocation times as well as the variation with time of the statistical moments: , and <s(t)>2 - < s(t)>^2 which provide full description of the diffusion process. The comparison of the analytic results with data derived from extensive Monte Carlo (MC) simulations reveals very good agreement and proves that the diffusion dynamics of unbiased translocation through a nanopore is anomalous in its nature.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev.
    corecore