260 research outputs found

    THE FIN EFFICIENCY OF THE FORGÓ-TYPE SLOTTED-RIB HEAT EXCHANGER

    Get PDF

    HEAT TRANSFER IN COMPACT PLATE-FIN HEAT EXCHANGERS

    Get PDF

    Cosmic-ray induced background intercomparison with actively shielded HPGe detectors at underground locations

    Full text link
    The main background above 3\,MeV for in-beam nuclear astrophysics studies with Îł\gamma-ray detectors is caused by cosmic-ray induced secondaries. The two commonly used suppression methods, active and passive shielding, against this kind of background were formerly considered only as alternatives in nuclear astrophysics experiments. In this work the study of the effects of active shielding against cosmic-ray induced events at a medium deep location is performed. Background spectra were recorded with two actively shielded HPGe detectors. The experiment was located at 148\,m below the surface of the Earth in the Reiche Zeche mine in Freiberg, Germany. The results are compared to data with the same detectors at the Earth's surface, and at depths of 45\,m and 1400\,m, respectively.Comment: Minor errors corrected; final versio

    Determination of gamma-ray widths in 15^{15}N using nuclear resonance fluorescence

    Full text link
    The stable nucleus 15^{15}N is the mirror of 15^{15}O, the bottleneck in the hydrogen burning CNO cycle. Most of the 15^{15}N level widths below the proton emission threshold are known from just one nuclear resonance fluorescence (NRF) measurement, with limited precision in some cases. A recent experiment with the AGATA demonstrator array determined level lifetimes using the Doppler Shift Attenuation Method (DSAM) in 15^{15}O. As a reference and for testing the method, level lifetimes in 15^{15}N have also been determined in the same experiment. The latest compilation of 15^{15}N level properties dates back to 1991. The limited precision in some cases in the compilation calls for a new measurement in order to enable a comparison to the AGATA demonstrator data. The widths of several 15^{15}N levels have been studied with the NRF method. The solid nitrogen compounds enriched in 15^{15}N have been irradiated with bremsstrahlung. The Îł\gamma-rays following the deexcitation of the excited nuclear levels were detected with four HPGe detectors. Integrated photon-scattering cross sections of ten levels below the proton emission threshold have been measured. Partial gamma-ray widths of ground-state transitions were deduced and compared to the literature. The photon scattering cross sections of two levels above the proton emission threshold, but still below other particle emission energies have also been measured, and proton resonance strengths and proton widths were deduced. Gamma and proton widths consistent with the literature values were obtained, but with greatly improved precision.Comment: Final published version, minor grammar changes, 10 pages, 4 figures, 8 tables; An addendum is published where the last section is revised: T. Sz\"ucs and P. Mohr, Phys. Rev. C 92, 044328 (2015) [arXiv:1510.04956

    Cross section measurement of the 12C(p,gamma)13N reaction with activation in a wide energy range

    Get PDF
    The CNO cycle is one of the fundamental processes of hydrogen burning in stars. The first reaction of the cycle is the radiative proton capture on 12C and the rate of this 12C(p,gamma)13N reaction is related to the 12C/13C ratio observed e.g. in the Solar System. The low-energy cross section of this reaction was measured several times in the past, however, the experimental data are scarce in a wide energy range especially around the resonance at 1.7 MeV. In the present work the 12C(p,gamma)13N cross section was measured between 300 and 1900 keV using the activation method. This method was only used several decades ago in the low-energy region. As the activation method provides the total cross section and has uncertainties different from those of the in-beam gamma-spectroscopy technique, the present results provide a largely independent data set for future low-energy extrapolations and thus for astrophysical reaction rate calculations.Comment: Accepted for publication in European Physical Journal

    Dynamic clamp with StdpC software

    Get PDF
    Dynamic clamp is a powerful method that allows the introduction of artificial electrical components into target cells to simulate ionic conductances and synaptic inputs. This method is based on a fast cycle of measuring the membrane potential of a cell, calculating the current of a desired simulated component using an appropriate model and injecting this current into the cell. Here we present a dynamic clamp protocol using free, fully integrated, open-source software (StdpC, for spike timing-dependent plasticity clamp). Use of this protocol does not require specialist hardware, costly commercial software, experience in real-time operating systems or a strong programming background. The software enables the configuration and operation of a wide range of complex and fully automated dynamic clamp experiments through an intuitive and powerful interface with a minimal initial lead time of a few hours. After initial configuration, experimental results can be generated within minutes of establishing cell recording

    Neuronal synchrony: peculiarity and generality

    Get PDF
    Synchronization in neuronal systems is a new and intriguing application of dynamical systems theory. Why are neuronal systems different as a subject for synchronization? (1) Neurons in themselves are multidimensional nonlinear systems that are able to exhibit a wide variety of different activity patterns. Their “dynamical repertoire” includes regular or chaotic spiking, regular or chaotic bursting, multistability, and complex transient regimes. (2) Usually, neuronal oscillations are the result of the cooperative activity of many synaptically connected neurons (a neuronal circuit). Thus, it is necessary to consider synchronization between different neuronal circuits as well. (3) The synapses that implement the coupling between neurons are also dynamical elements and their intrinsic dynamics influences the process of synchronization or entrainment significantly. In this review we will focus on four new problems: (i) the synchronization in minimal neuronal networks with plastic synapses (synchronization with activity dependent coupling), (ii) synchronization of bursts that are generated by a group of nonsymmetrically coupled inhibitory neurons (heteroclinic synchronization), (iii) the coordination of activities of two coupled neuronal networks (partial synchronization of small composite structures), and (iv) coarse grained synchronization in larger systems (synchronization on a mesoscopic scale
    • 

    corecore