26 research outputs found

    Intermediacy of publications

    No full text
    Citation networks of scientific publications offer fundamental insights into the structure and development of scientific knowledge. We propose a new measure, called intermediacy, for tracing the historical development of scientific knowledge. Given two publications, an older and a more recent one, intermediacy identifies publications that seem to play a major role in the historical development from the older to the more recent publication. The identified publications are important in connecting the older and the more recent publication in the citation network. After providing a formal definition of intermediacy, we study its mathematical properties. We then present two empirical case studies, one tracing historical developments at the interface between the community detection literature and the scientometric literature and one examining the development of the literature on peer review. We show both conceptually and empirically how intermediacy differs from main path analysis, which is the most popular approach for tracing historical developments in citation networks. Main path analysis tends to favour longer paths over shorter ones, whereas intermediacy has the opposite tendency. Compared to the main path analysis, we conclude that intermediacy offers a more principled approach for tracing the historical development of scientific knowledge.Merit, Expertise and Measuremen

    Disassortativity of Class Collaboration Networks

    No full text

    Defining the scope of the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet): A bottom-up and One Health approach

    Get PDF
    Background: Building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet) was proposed to strengthen the European One Health antimicrobial resistance (AMR) surveillance approach. Objectives: To define the combinations of animal species/production types/age categories/bacterial species/specimens/antimicrobials to be monitored in EARS-Vet. Methods: The EARS-Vet scope was defined by consensus between 26 European experts. Decisions were guided by a survey of the combinations that are relevant and feasible to monitor in diseased animals in 13 European countries (bottom-up approach). Experts also considered the One Health approach and the need for EARS-Vet to complement existing European AMR monitoring systems coordinated by the ECDC and the European Food Safety Authority (EFSA). Results: EARS-Vet plans to monitor AMR in six animal species [cattle, swine, chickens (broilers and laying hens), turkeys, cats and dogs], for 11 bacterial species (Escherichia coli, Klebsiella pneumoniae, Mannheimia haemolytica, Pasteurella multocida, Actinobacillus pleuropneumoniae, Staphylococcus aureus, Staphylococcus pseudintermedius, Staphylococcus hyicus, Streptococcus uberis, Streptococcus dysgalactiae and Streptococcus suis). Relevant antimicrobials for their treatment were selected (e.g. tetracyclines) and complemented with antimicrobials of more specific public health interest (e.g. carbapenems). Molecular data detecting the presence of ESBLs, AmpC cephalosporinases and methicillin resistance shall be collected too. Conclusions: A preliminary EARS-Vet scope was defined, with the potential to fill important AMR monitoring gaps in the animal sector in Europe. It should be reviewed and expanded as the epidemiology of AMR changes, more countries participate and national monitoring capacities improve
    corecore