2,208 research outputs found

    A comparison of incompressible limits for resistive plasmas

    Full text link
    The constraint of incompressibility is often used to simplify the magnetohydrodynamic (MHD) description of linearized plasma dynamics because it does not affect the ideal MHD marginal stability point. In this paper two methods for introducing incompressibility are compared in a cylindrical plasma model: In the first method, the limit γ\gamma \to \infty is taken, where γ\gamma is the ratio of specific heats; in the second, an anisotropic mass tensor ρ\mathbf{\rho} is used, with the component parallel to the magnetic field taken to vanish, ρ0\rho_{\parallel} \to 0. Use of resistive MHD reveals the nature of these two limits because the Alfv\'en and slow magnetosonic continua of ideal MHD are converted to point spectra and moved into the complex plane. Both limits profoundly change the slow-magnetosonic spectrum, but only the second limit faithfully reproduces the resistive Alfv\'en spectrum and its wavemodes. In ideal MHD, the slow magnetosonic continuum degenerates to the Alfv\'en continuum in the first method, while it is moved to infinity by the second. The degeneracy in the first is broken by finite resistivity. For numerical and semi-analytical study of these models, we choose plasma equilibria which cast light on puzzling aspects of results found in earlier literature.Comment: 14 pages, 10 figure

    Simulations of Dense Atomic Hydrogen in the Wigner Crystal Phase

    Full text link
    Path integral Monte Carlo simulations are applied to study dense atomic hydrogen in the regime where the protons form a Wigner crystal. The interaction of the protons with the degenerate electron gas is modeled by Thomas-Fermi screening, which leads to a Yukawa potential for the proton-proton interaction. A numerical technique for the derivation of the corresponding action of the paths is described. For a fixed density of rs=200, the melting is analyzed using the Lindemann ratio, the structure factor and free energy calculations. Anharmonic effects in the crystal vibrations are analyzed.Comment: Proceedings article of the Study of Matter at Extreme Conditions (SMEC) conference in Miami, Florida; submitted to Journal of Physics and Chemistry of Solids (2005

    Regulation of steroid hormone receptor function by the 52-kDa FK506-binding protein (FKBP52)

    Get PDF
    The large FK506-binding protein FKBP52 has been characterized as an important positive regulator of androgen, glucocorticoid and progesterone receptor signaling pathways. FKBP52 associates with receptor-Hsp90 complexes and is proposed to have roles in both receptor hormone binding and receptor subcellular localization. Data from biochemical and cellular studies have been corroborated in whole animal models as fkbp52-deficient male and female mice display characteristics of androgen, glucocorticoid and/or progesterone insensitivity. FKBP52 receptor specificity and the specific phenotypes displayed by the fkbp52-deficient mice have firmly established FKBP52 as a promising target for the treatment of a variety of hormone-dependent diseases. Recent studies demonstrated that the FKBP52 FK1 domain and the proline-rich loop within this domain are functionally important for FKBP52 regulation of receptor function. Based on these data, efforts are currently underway to target the FKBP52 FK1 domain and the proline-rich loop with small molecule inhibitors.Fil: Sivils, Jeffrey C. University Of Texas At El Paso; Estados UnidosFil: Storer, Cheryl L.. University Of Texas At El Paso; Estados UnidosFil: Galigniana, Mario Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Cox, Marc B.. University Of Texas At El Paso; Estados Unido

    FKBP51 and FKBP52 in signaling and disease

    Get PDF
    FKBP51 and FKBP52 are diverse regulators of steroid hormone receptor signaling, including receptor maturation, hormone binding and nuclear translocation. Although structurally similar, they are functionally divergent, which is largely attributed to differences in the FK1 domain and the proline-rich loop. FKBP51 and FKBP52 have emerged as likely contributors to a variety of hormone-dependent diseases, including stress-related diseases, immune function, reproductive functions and a variety of cancers. In addition, recent studies have implicated FKBP51 and FKBP52 in Alzheimer's disease and other protein aggregation disorders. This review summarizes our current understanding of FKBP51 and FKBP52 interactions within the receptor-chaperone complex, their contributions to health and disease, and their potential as therapeutic targets for the treatment of these diseases.Fil: Storer, Cheryl L.. University Of Texas At El Paso; Estados UnidosFil: Dickey, Chad A.. University of South Florida. Alzheimer’s Institute; Estados UnidosFil: Galigniana, Mario Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Rein, Theo. Max Planck Institute of Psychiatry; AlemaniaFil: Cox, Marc B.. University Of Texas At El Paso; Estados Unido

    Inductively coupled plasmas sustained by an internal oscillating current

    Get PDF
    A global electromagnetic model of an inductively coupled plasma sustained by an internal oscillating current sheet in a cylindrical metal vessel is developed. The electromagnetic field structure, profiles of the rf power transferred to the plasma electrons, electron/ion number density, and working points of the discharge are studied, by invoking particle and power balance. It is revealed that the internal rf current with spatially invariable phase significantly improves the radial uniformity of the electromagnetic fields and the power density in the chamber as compared with conventional plasma sources with external flat spiral inductive coils. This configuration offers the possibility of controlling the rf power deposition in the azimuthal direction

    Diagnostics and two-dimensional simulation of low-frequency inductively coupled plasmas with neutral gas heating and electron heat flares

    Get PDF
    This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers⩾0.55 kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron–ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge

    Credimus

    Full text link
    We believe that economic design and computational complexity---while already important to each other---should become even more important to each other with each passing year. But for that to happen, experts in on the one hand such areas as social choice, economics, and political science and on the other hand computational complexity will have to better understand each other's worldviews. This article, written by two complexity theorists who also work in computational social choice theory, focuses on one direction of that process by presenting a brief overview of how most computational complexity theorists view the world. Although our immediate motivation is to make the lens through which complexity theorists see the world be better understood by those in the social sciences, we also feel that even within computer science it is very important for nontheoreticians to understand how theoreticians think, just as it is equally important within computer science for theoreticians to understand how nontheoreticians think

    Bostonia. Volume 15

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs

    Formation and Interaction of Membrane Tubes

    Full text link
    We show that the formation of membrane tubes (or membrane tethers), which is a crucial step in many biological processes, is highly non-trivial and involves first order shape transitions. The force exerted by an emerging tube is a non-monotonic function of its length. We point out that tubes attract each other, which eventually leads to their coalescence. We also show that detached tubes behave like semiflexible filaments with a rather short persistence length. We suggest that these properties play an important role in the formation and structure of tubular organelles.Comment: 4 pages, 3 figure

    Comparison of two non-primitive methods for path integral simulations: Higher-order corrections vs. an effective propagator approach

    Full text link
    Two methods are compared that are used in path integral simulations. Both methods aim to achieve faster convergence to the quantum limit than the so-called primitive algorithm (PA). One method, originally proposed by Takahashi and Imada, is based on a higher-order approximation (HOA) of the quantum mechanical density operator. The other method is based upon an effective propagator (EPr). This propagator is constructed such that it produces correctly one and two-particle imaginary time correlation functions in the limit of small densities even for finite Trotter numbers P. We discuss the conceptual differences between both methods and compare the convergence rate of both approaches. While the HOA method converges faster than the EPr approach, EPr gives surprisingly good estimates of thermal quantities already for P = 1. Despite a significant improvement with respect to PA, neither HOA nor EPr overcomes the need to increase P linearly with inverse temperature. We also derive the proper estimator for radial distribution functions for HOA based path integral simulations.Comment: 17 pages, latex, 6 postscript figure
    corecore