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A global electromagnetic model of an inductively coupled plasma sustained by an internal
oscillating current sheet in a cylindrical metal vessel is developed. The electromagnetic field
structure, profiles of the rf power transferred to the plasma electrons, electron/ion number density,
and working points of the discharge are studied, by invoking particle and power balance. It is
revealed that the internal rf current with spatially invariable phase significantly improves the radial
uniformity of the electromagnetic fields and the power density in the chamber as compared with
conventional plasma sources with external flat spiral inductive coils. This configuration offers the
possibility of controlling the rf power deposition in the azimuthal direction. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1430893#

I. INTRODUCTION

There has been a great deal of interest in high-density,
low-temperature plasma sources for various applications.1–4

Inductively coupled plasma~ICP! sources featuring high
(1011– 1012 cm23) ion densities and low plasma potentials
have proved to be very efficient in the generation of large-
area and large-volume plasmas for fabrication of unique
nanostructures, synthesis, and processing of advanced mate-
rials and ultrafine selective etching of semiconductor
wafers.5–11 The unmagnetized ICPs are generated by time-
varying electromagnetic fields excited by rf currents driven
in external or internal coils powered by an rf generator
through a matching circuit.5,7,12,13 However, the uniformity
of the electromagnetic fields and rf power density, which is a
key factor for plasma processing applications, still deserves
substantial improvement.14

Recently a few attempts to improve the uniformity of the
power deposition, by modifying the coil configuration and
adjusting the rf power/plasma coupling, have been made. In
particular, a series connection of parallel conductors embed-

ded in the plasma inside thin quartz tubes has proved to be
capable of large-area, fairly uniform plasma production.15

Another antenna configuration with a six-turn segmented
coil, where five inner segments are connected in parallel with
the external sixth segment through a variable capacitor, has
also been reported.16 In this scheme, one can achieve a high
degree of uniformity of the electron/ion number density by
proper adjustment of the power/plasma coupling.

The uniformity of the electromagnetic fields and rf
power transferred to the plasma electrons can also be im-
proved by excitation of the internal rf current with spatially-
varying phase.17 A similar principle, in combination with
vertical steady magnetic fields, has been used in rotating
magnetic field current-drive experiments.18 Furthermore,
schemes with internally driven rf currents usually achieve
plasma production with lower powers than those with exter-
nal coils.19,20 Indeed, in conventional external-coil schemes
useless rf fields are usually generated outside the chamber.17

The results of computation show that by using an internal
rotating current~IRC!, one can improve the uniformity of
power density and simultaneously minimize power
consumption.17

An obvious drawback of the conventional ICP source
with an external flat spiral coil is its inefficiency for upscal-
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ing due to parasitic standing-wave effects.14,15 In addition,
larger plasma reactors would require enlarged fused silica
windows, which have to be made thick enough to withstand
huge pressure loads. Hence, the relative power coupling and
cost efficiency of upscaled conventional ICP sources could
dramatically decrease. In this regard, fully metal chambers
with internal rf power input seem advantageous in compari-
son with the external-coil devices.

In this article, we consider high-density plasma produc-
tion by an internal oscillating current~IOC! in a fully metal
vacuum chamber and compare the results with the ICP and
IRC-generated plasma~IRCGP! cases. The IOC principle has
earlier been tested for the efficient steady-state current drive
in compact spherical tori.21

Using the basic electromagnetic equations and conserva-
tion laws, the distribution of electromagnetic field in the
chamber, the efficiency of power deposition, and the spa-
tially averaged plasma density are computed. It is shown that
nonuniformity of the rf power density and electromagnetic
fields, a troublesome problem peculiar to the ICP sources,
can be overcome by exciting a spatially invariable~unidirec-
tional! current sheet inside a cylindrical metal vessel.

The article is organized as follows. In Sec. II the spatial
distribution of the electromagnetic field in the cylindrical
resonator with an internal oscillating rf current is studied. In
Sec. III the power transferred to the IOC generated plasma
~IOCGP! is computed and visualized. In Sec. IV the power
and particle balance are considered and approximate profiles
of the plasma density are obtained. The working points of a
low-pressure argon discharge are calculated in Sec. V. The
results obtained and the limitations of our analysis are dis-
cussed in Sec. VI. A brief summary of this work is given in
Sec. VII.

II. ELECTROMAGNETIC FIELD CONFIGURATION

In this section the distribution of the electromagnetic
fields within the cylindrical metal vessel of internal radiusR
and lengthL1L is studied. The chamber top is located at
z52L, and the bottom is atz5L. We consider the plasma
generated by a rf current sheet with spatially constant phase
which is uniformly distributed over the cylindrical cross sec-
tion z50:

I RF5I 0 exp~2 ivt !@cos~f! r̂ 2sin~f!f̂#. ~1!

This is a unidirectional oscillating rf current depicted in Fig.
1 at different moments of time. Here,r̂ and f̂ are unit vec-
tors in the radial and azimuthal directions andI 0 andv are
the rf current amplitude and frequency, respectively. In the
calculation of the electromagnetic fields and rf power den-
sity, we assume that a spatially uniform plasma with different
densitiesn1 and n2 exists in the volumes above (2L,z
,0), and beneath (0,z,L) the current sheet, respectively.
We note that the above current is a practical alternative to
the internal rotating ~spatially varying! current I RF

5I 0 exp@2i(vt2f)#(r̂1if̂), considered in Ref. 17.
The electromagnetic fields are computed using the set of

Maxwell’s equations22

¹3Ej52
1

c

]H j

]t
, ~2!

¹3H j5
1

c

]~« jEj !

]t
, ~3!

whereEj and H j are the electric and magnetic fields in the
two different plasma volumes (j 51,2), respectively. Here,
« j512vp j

2 /@v(v1 ine j)# is the permittivity of the cold uni-
form plasma,vp j is the electron plasma frequency, andne j is
the effective rate of electron–neutral collisions. We consider
the transverse-electric~TE! solutions of Eqs.~2!–~3! with the
components of the electromagnetic fieldE5(Er ,Ef ,0) and
H5(Hr ,Hf ,Hz). Applying the electrodynamic boundary
conditions atz50,2L,L, andr 5R,22 and focusing on field
and plasma parameters in the volume 0,z,L, one can ob-
tain the following TE solution:

Hr
(2)5sin~f! (

n51

`

gn
(2)knj1

(2)~z!
]

]r
J1~Y1nr !, ~4!

Hf
(2)52cos~f!

1

r (
n51

`

gn
(2)knj1

(2)~z!J1~Y1nr !, ~5!

Hz
(2)5sin~f! (

n51

`

knY1n
2 j2

(2)~z!J1~Y1nr !, ~6!

Er
(2)5 i cos~f!

v

cr (
n51

`

knj2
(2)~z!J1~Y1nr !, ~7!

Ef
(2)52 i sin~f!

v

c (
n51

`

knj2
(2)~z!

]

]r
J1~Y1nr !, ~8!

wherekn5qn /Dn(TE), Y1n5r1n8 /R,

FIG. 1. Sketch of the internal oscillating rf current.
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j1
(2)~z!5cosh@gn

(2)~L2z!#/sinh~gn
(2)L !,

j2
(2)~z!5sinh@gn

(2)~L2z!#/sinh~gn
(2)L !,

qn5E
0

R

rJ1~Y1nr ! f ~r !drY E
0

R

rJ1
2~Y1nr !dr,

Dn~TE!5gn
(1) coth~gn

(1)L!1gn
(2) coth~gn

(2)L !,

is the dispersion relation for the TE electromagnetic field in
the plasma-filled cylindrical metal resonator with radiusR
and lengthL1L, gn

(1,2)5@Y1n
2 2(v/c)2« (1,2)#

1/2 is the in-
verse field penetration length,]J1(r1n8 )/]r 50, f (r )
5(4p/c)Jr , andJ5I 0/2R is a surface current per unit di-
ameter. Here, the superscripts 1 and 2 correspond to the vol-
umes2L,z,0 and 0,z,L, respectively.

Figure 2 depicts the radial and axial profiles ofHr , Hf ,
andEr components of the electromagnetic field in the cham-
ber for different plasma densities, azimuthal anglef5450

and given axial and radial position att50. Similar depen-
dence for the axial magnetic and azimuthal electric field
components is displayed in Fig. 3 for the same plasma den-
sities and another azimuthal position (f5900).

The plasma parameters~Table I! have been taken as rep-
resentative values in the experiments on low-frequency
(;0.5 MHz! ICPs.10,23–25Figures 2–3 show that the electro-
magnetic field generated by the internal oscillating current is
highly uniform in radial direction, especially in the vicinity
of the chamber walls. We note that all field components,
except for the axial magnetic field@Figs. 3~a! and 3~c!#, have
maximum values near the chamber axis. The vanishing of the
field at the chamber walls is consistent with conventional

boundary conditions at ideally conducting metal surfaces.22

The electromagnetic field components also feature maxima
near the excitation source (z50) and diminish toward the
bottom of the vessel. It is also evident that, as the plasma
density increases, the electromagnetic field becomes more
and more localized near the planez50, which is obviously
attributed to the ‘‘skin effect’’2 essential for most rf plasmas.

We now compare the dependence of the TE field pen-
etration length into the chamber on the plasma parameters in
the IOCGP and the ICP. For simplicity, from this point on-
ward the ICP means the ICPs generated in the conventional
configuration with an external flat spiral coil atz52d,
whered is a thickness of the dielectric window separating the
plasma from the coil. In reality,d includes a thick air gap
inbetween the coil holder and a quartz window.10,23–25It is
worth mentioning that the field penetration length is an im-
portant characteristic of rf power deposition.2 Figure 4 shows
the ratio q5(g1

(2)/g0)21 of the field penetration depths in

FIG. 2. Nondimensional profiles ofHr , Hf , andEr3103 field components
~multiplied by 21! for ne2 /v535, ne2 /ne152.0, andvp2 /vp151.5. ~a!–
~c! stand for radial profiles atz/L50.1 andf545°, while ~e!–~f! for axial
profiles at r /R50.2 and the same azimuthal position. Curves 1–3 corre-
spond tone5331011, 1012, and 831012 cm23, respectively.

FIG. 3. Same as in Fig. 2 forHz andEf3103, f590°. In ~c! and~d!, radial
position r /R is 0.8 and 0.2, respectively.

TABLE I. Main parameters and typical values.

Parameter Notation Value

Electron temperature Te 1.5–2.5 eV
Ion temperature Ti 0.026 eV
Temperature of neutrals Tn 0.026 eV
Gas pressure~Ar! p0 30–100 mTorr
Plasma density ne 109–731012 cm23

Absorbed rf power Pp 0.1–1 kW
Window dielectric constant (ICP) ed 4
Window thickness (ICP) d 1.6 cm
Chamber length (inner) L 20 cm
Chamber radius (inner) R 16 cm
Generator frequency v/2p 500 kHz
Amplitude of rf current I 0 15–25 A
Ionization threshold (Ar) Ei 15.76 eV
4s excitation threshold (Ar) E4s 11.5 eV
4p excitation threshold (Ar) E4p 13.2 eV
Ion mass (Ar) mi 18363403me

Cross section~i–n collisions! s in 10– 14–10215 cm2
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the two configurations~IOC and ICP! as a function of
plasma density for different gas pressures@Fig. 4~a!# and
versusgas pressure for different plasma densities@Fig. 4~b!#.
Hereg05@Y01

2 2(v/c)2«2#1/2 is the inverse field penetration
depth in the ICP source, Y015r018 /R, and
dJ0(r018 )/dx50.10,26 From Fig. 4 one can see that at plasma
densitiesne,1012 cm23, the value of (g1

(2))21 can be up to
two times larger thang0

21. However, at higher electron num-
ber densities the difference between the two field penetration
lengths becomes small. Hence, the IOC configuration ap-
pears to be more advantageous compared to the ICP source
in terms of better TE field penetration into the chamber at
intermediate (ne;1010– 1011 cm23) plasma densities.

The distribution of the IOC-generated magnetic field in
the poloidal (r ,z) cross section is plotted in Fig. 5 for rar-
efied (ne;109 cm23) and dense (ne;1012 cm23) plasmas.
It is evident that at higher plasma densities the field is local-
ized mainly in the vicinity of the current plane. Figure 5 also
confirms the high degree of radial uniformity of the electro-
magnetic fields generated by the IOC. Moreover, as follows
from Figs. 2–5, the radial uniformity of the electromagnetic
fields in the IOCGP is indeed better than in the ICP.

III. rf POWER DENSITY

We now turn our attention to computation of the power
transferred to the plasma electrons and investigate the depen-
dence of the rf power density on the plasma and discharge
control parameters. Contrary to the ICP case featuring a sole
electric field componentEf , the IOC generates an additional
radial electric fieldEr and hence the azimuthal magnetic
field Bf . An additional electric field component will defi-
nitely modify the power absorbed by highly mobile plasma
electrons and the power balance in the chamber in general.
Possible implications of generation of the azimuthal mag-
netic field component are discussed in Sec. VI. It is remark-
able that the electrons are predominantly heated in a narrow
power absorption region, which is normally on the order of
the field penetration lengthg1

21. The neutrals can be excited
and ionized through electron impact processes. Using the
fluid approach, for the power deposited into the plasma vol-
ume 0,z,L, one can obtain

Wp5
1

4pEV
Re@s (2)#uE(2)u2 dV, ~9!

where s (2)5vp2
2 /4p(ne22 iv) is the plasma conductivity,

dV52pr dr df, and uE(2)u25@Re(Er
(2))#21@ Im(Er

(2))#2

1@Re(Ef
(2))#21@ Im(Ef

(2))#2. Note that in the ICP case

uEICP
(2) u25@Re(Ef

(2))#21@ Im(Ef
(2))#2. Equation~9! will further

be used in computation of the discharge working points.

FIG. 4. Ratio of the rf field penetration lengthsq vs plasma density~a!, and
gas filling pressure~b!. In ~a!, curves 1–3 correspond to gas pressuresp0

515, 20, and 25 mTorr, respectively. In~b!, curves 1–3 are plotted forne

51011, 831011, and 531012 cm23, respectively.

FIG. 5. Magnetic field lines in poloidalf590° cross
section for rarefied@;109 cm23, diagrams~a! and~b!#
and dense@;1012 cm23, diagrams~c! and~d!# plasmas
generated in the IOC~a!,~c! and ICP~b!,~d! configura-
tions.
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The distribution of the rf power transferred to the plasma
electrons over the poloidal cross section is visualized in Figs.
6 and 7 for 500 kHz IOC-driven rarefied (ne;109 cm23)
and dense (ne;1012 cm23) plasmas. For comparison, we
have also computed similar distributions for the IRCGP and
ICP in the chamber with the same geometrical sizes, plasma
parameters, and rf frequency.

The remarkable difference of the IOC case from the IRC
and ICP configurations is in azimuthal profiles of the rf
power densityWpV . Indeed, the IRC and ICP devices pro-
duce axially symmetric profiles ofWpV , while in the IOC
configuration the power absorbed by the plasma electrons
features a clearly resolved dipolar azimuthal profile~Fig. 8!.

This gives the possibility of controlling the power deposition
in processes requiring azimuthal profiling of the film thick-
ness or etch rate.1 Further comparison reveals deeper power
deposition in the IOC and IRC configurations in comparison
with the ICP. Figures 8 and 9 also elucidate the high degree
of radial uniformity of the rf power density in the IOC and
IRC schemes.

It is worthwhile to mention that in a conventional ICP
the power absorbed by the plasma electrons appears to be
strongly nonuniform near the chamber axis@Figs. 7~a! and
9~b!#. Similar nonuniformity in the power contours in low-
frequency ICPs have been reported earlier.10,25,27 On the
other hand, such a nonuniformity can be eliminated by gen-

FIG. 6. Contours of the rf power density in the chamber filled by rarefied~a!,~b!,~c! and dense~d!,~e!,~f! IOC-generated plasmas plotted forf50° ~a!,~d!,
f545° ~b!,~e!, andf590° ~c!,~f!. Plasma densities are the same as in Fig. 5.

FIG. 7. Same as in Fig. 6 for the IRC~a!,~b! and ICP
~c!,~d! geometries.
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erating the internal rf curents with spatially constant~Figs. 6
and 8! or spatially varying@Figs. 7~b!, 7~d!, and 9~b!# phases.
Furthermore, the radial uniformity of power deposition into
the plasma improves at higher electron/ion number densities.

The difference between the IOC and IRC schemes appears to
be in azimuthal profiles and maximal absolute values of
power density, the latter being twice higher in the IRC case
under the sameI 0, chamber sizes and plasma parameters.

Figure 10 shows the nondimensional total power ab-
sorbed by the plasmaWp

nd5Wp(c/RJAv)2 as a function of
the plasma density and gas pressure. It should be noted that
Wp rises with pressure, which is consistent with Eq.~9!. At
low plasma densities, the power absorbed by the plasma in-
creases withne , while at higher densities it starts to decline
when the electron/ion number density reachesne;531011

cm23. From Fig. 10 one can see that the critical plasma
density increases with pressure, beingne;6.331011 cm23 at
p0530 mTorr. A similar tendency has previously been re-
ported for the IRC configuration.17

IV. POWER AND PARTICLE BALANCE

Here we apply the power and particle conservation equa-
tions to compute the minimal rf power necessary to sustain

FIG. 8. Three-dimensional~3D! plot of the rf power density deposited by
the IOC for ne51011 cm23 and gas pressurep0520 mTorr ~a!, 25 mTorr
~b!, 30 mTorr, and~c!, respectively.

FIG. 9. Same as in Fig. 8 for the IRC~a! and ICP~b! geometries andp0

520 mTorr.

1809J. Appl. Phys., Vol. 91, No. 4, 15 February 2002 Tsakadze et al.

Downloaded 01 Jan 2013 to 129.96.237.231. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



the discharge with the required electron/ion number density
as a function of operating gas pressure and other control
parameters. In these calculations we assume the same size of
the vacuum chamber and the rf frequency as in low-
frequency ICPs (R516 cm, L520 cm, andv/2p5500
kHz!.23,24 In the steady state we have

Wp5Wloss, ~10!

¹~Da¹ne!2n ine50, ~11!

where Wloss5nvVpup is the electron power loss to sustain
the plasma with the spatially averaged densitynv in the vol-
umeVp

up5e@n i~Ei1ET!1n4sE4s1n4pE4p#

is a total loss per electron–ion pair created.28,29 The latter
includes power losses for ionization~first term!, thermal mo-
tion and flows of plasma particles through the sheaths to the
vessel walls~second termET53Te! and excitation of neutral
gas to 4s and 4p states~third and fourth terms, respectively!.
For the ionization and excitation rates in argon we have28

n j5a j3108Te
z j p0 exp~2Ej /Te!, ~12!

where j 5( i ,4s,4p), a i58.13, a4s51.77, a4p54.95, z i

50.68, z4s50.74, andz4p50.71. Here,Ei515.76 eV,E4s

511.56 eV, andE4p513.2 eV are the ionization and excita-
tion thresholds, respectively. In Eq.~12!, Te is in units of eV
andp0 is in Torr. In Eq.~11!, Da;Tem i /e is the ambipolar
diffusion coefficient,m i;e/min in is the ion mobility, andmi

is the ion mass. For the rate of ion–neutral collisions one has
n in5Nns inVTi , whereVTi , Nn , ands in are the ion thermal
velocity, density of neutrals and the cross section for ion–
neutral collisions, respectively. The pressure range below a
few hundred mTorr is considered so that one can assume that
the ambipolar diffusion is a dominant regime for the particle
loss.30

In the boundary conditions for the electron/ion fluxes,
we account for the finite width of the plasma sheath. Indeed,
the radial G r52Da]ne /]r and axial Gz52Da]ne /]z
fluxes satisfy

G r~r 5R!5Gz~z5L !5Gz~z502 !5nsuB

and

Gz~z52L!5Gz~z501 !52nsuB ,

whereuB5(Te /mi)
1/2 andns are the ion velocity and density

at the sheath edge, respectively. The effective diffusion
length L5(x21gz

2)21/2 corresponds to the stationary state
of Eq. ~11!, when the spatially averaged ionization gain and
ambipolar diffusion loss balance each other. The approxi-
mate plasma density profile is

ne~r ,z!5ne0J0~xr !cos@gz~z2L/2!#, ~13!

where Te , x, and gz satisfy gz
21x25n i /Da ,

gz tanh(gzL/2)5uB /Da , xJ1(xR)/J0(xR)5uB /Da , and it
is implied thatuB[uB(Te), Da[Da(Te), andn i[n i(Te).

The standard iteration procedure17 allows one to obtain
the electron temperature as a function of the working gas
pressure and chamber sizes. We note thatTe declines in the

pressure range 15– 200 mTorr, which appears to be consis-
tent with numerical and experimental results on rf discharges
in argon.23,24,31

V. DISCHARGE WORKING POINTS

We now estimate the minimum power deposition neces-
sary to sustain the discharge and produce the desired plasma
density. Figures 11 and 12 show the power absorbedWp and
lost Wlossby the electrons as a function of the plasma density

FIG. 10. 3-D plot of the dimensionless power transferred to plasma elec-
trons vs plasma density and gas pressure.

FIG. 11. Pp and Ploss as a function of argon plasma density for 30 and 70
mTorr IRCGPs~a!, IOCGPs~b!, and ICPs~c! with I 05 15 A.
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for different gas pressures and rf currents 15 A~Fig. 11! and
20 A ~Fig. 12! driven in coils of different configurations. The
intersection of power deposition and loss curves yields the
minimum power necessary to sustain a discharge with the
desired plasma density. As can be seen from Fig. 11 (I 0

515 A!, the spatially averaged plasma densityne;9.4
31011 cm23 can be produced in the IRC configuration at gas
pressurep0530 mTorr with input power of;570 W. Mean-
while, the IOCGP with densityne;531011 cm23 can be
generated with only;295 W of rf power at the same gas
pressure. One can notice that curvesWp and Wloss do not
intersect in the ICP configuration for the coil current of 15 A.

Hence, under such conditions the conventional ICP con-
figuration is not capable of generating a plasma. By raising
the gas pressure, one can achieve higher plasma densities.
For instance, atp0570 mTorr, 580 W of rf power can gen-
erate plasmas withne;231012 cm23 in the IRC configura-
tion ~IRCC!, while a power of 291 W is sufficient to create
the plasma withne;1012 cm23 in the IOCC. As can be seen
from Fig. 12, the ICP can only be produced by rf currents
higher than 20 A. Indeed, at 30 mTorr, a power of 1125 W is
necessary to sustain plasmas withne;1.931012 cm23 in
this configuration atI 0;20 A. In the IOC and IRC configu-
rations such values arene;1.431012 cm23 with ;870 W,
andne;8.631011 cm23 with ;520 W, respectively.

At p0570 mTorr, the electron number density can be as
high as 3.131012 cm23 in the IRCC, 1.831012 cm23 in the

IOCC, and 3.331012 cm23 in the ICP. The rf power required
to sustain the plasma column amounts to;900, ;530, and
;963 W, respectively. The rf discharge working points cor-
responding to different coil configurations and operating gas
pressures are summarized in Table II. It is worth emphasiz-
ing that the plasma cannot be generated in the ICPC at coil
currents lower than;20 A. However, the IRC and IOC con-
figurations can produce dense plasmas even at coil currents
as low as;10 A.

VI. DISCUSSION

We have investigated the effect of a spatially invariable
~unidirectional! internal rf current on ICPs sustained in a
cylindrical metal vessel. The implications and limitations of
this study will be discussed in this section. Physically, the
introduction of an oscillating rf current inside the vacuum
chamber significantly affects the electromagnetic field distri-
bution, rf power deposition and modifies the parameters of
the plasma produced. The simplified approach adopted here
involves consideration of both electrodynamics and power/
particle balance. The electromagnetic field profiles and the rf
power density are computed using an assumption about the
spatial uniformity of the plasma density in the chamber. The
output of the electrodymanic analysis is used to calculate the
working points of the discharge, where

nv5Vp
21E

Vp

ne dV

FIG. 12. Same as in Fig. 11, forI 05 20 A.

TABLE II. Discharge working points.

Configuration and gas pressure~mTorr! ne ~cm23! Pp ~W!

I 0518 A
IOC, 20 4.931011 423.78
IOC, 30 7.231011 429.59
IOC, 50 1.131012 434.24
IOC, 70 1.531012 436.56
IOC, 100 2.031012 438.89
IRC, 20 8.531011 733.63
IRC, 30 1.331012 745.26
IRC, 50 2.031012 761.53
IRC, 70 2.731012 775.45
IRC, 100 3.631012 787.10
ICP, 20 7.631011 670.77
ICP, 30 1.031012 616.72
ICP, 50 1.231012 477.73
I 0520 A
IOC, 20 5.831011 507.69
IOC, 30 8.531011 515.44
IOC, 50 1.431012 524.74
IOC, 70 1.831012 529.39
IOC, 100 2.531012 534.04
IRC, 20 9.831011 853.19
IRC, 30 1.431012 866.75
IRC, 50 2.331012 888.45
IRC, 70 3.131012 902.01
IRC, 100 4.231012 921.00
ICP, 20 1.331012 1152.40
ICP, 30 1.931012 1124.60
ICP, 50 2.731012 1041.21
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is the electron/ion number density averaged over the plasma
volumeVp , which was approximately taken as the chamber
volume. Thus, the results for the electromagnetic field pro-
files correspond to a uniform plasma density equal to the
spatially averaged onenv .

Driving the oscillating rf current inside the chamber one
can achieve substantially better uniformity of power deposi-
tion near the chamber axis, as compared with the ICP devices
with an external flat spiral coil. The specific configuration of
I RF allows one to achieve an azimuthally profiled distribution
of the power density, which is similar to that in dipolar (m
51) surface-wave-sustained plasma columns.32 Further-
more, the rf azimuthal magnetic fieldHf generated by the
IOC can restrain the radial and axial diffusion of electrons,
thus affecting the corresponding plasma density profiles.
Noting that Hf is maximal at f50 and vanishes atf
590° Eq.~5!, we infer that the electron diffusion is predomi-
nantly restrained in the cross sections with smaller values of
f. Hence, one should expect a gradual increase of the
electron/ion number density with the variation of the azi-
muthal angle from 90° to 0°, the latter being the direction of
the internal oscillating current. This may have important
practical implications, such as fabrication of thin optical
coatings with azimuthally profiled refractive index for
spectral/polarization devices.33

Therefore, one can expect that the azimuthal variation of
Wp will result in spatial nonuniformity of the ionization
source, and hence, the electron temperature. In particular,
this can lead to heat flowsQ5(5neTe/2menen)¹Te that can
substantially modify the power balance in the discharge and
be the reason for frequently observed deviations of the
electron/ion number density profiles from the ones obtained
from the conventional diffusion theory Eq.~13!. The effect
of nonuniformities inTe and ionization rates on large-area rf
plasmas in high aspect ratio (R/L;1) cylindrical chambers
is the subject of a separate investigation.34 For simplicity, the
consideration in this work was limited to visualization of
profiles of the rf power deposition and computation of the
discharge working points in terms of the spatially averaged
plasma densityversusargon pressure. The model can further
be improved by applying difference schemes35 and a time-
variable numerical approach34 involving a crosslink between
the electrodynamic and power/particle balance blocks. In this
way, it might appear possible to obtain more realistic@than
Eq. ~13!# density profiles.

It is worthwhile to mention that our preliminary experi-
mental results suggest that assumption of uniform radial and
axial electron/ion density profiles is fairly accurate except for
the narrow near-coil and near-wall regions,36 which justifies
the viability of the simple model adopted. The experiments
are in progress and a report is expected in the near future.

In the above, the discharge operating points~Figs. 11
and 12! were computed for the two values of the gas pres-
sure, namely 30 and 70 mTorr. Note that the intermediate
~20–100 mTorr! pressure range is typical for a large number
of processes including barrier layer deposition, passivation,
photoresist striping in ultralarge scale integrated~ULSI!
technologies, chemical vapor deposition of carbon-based
films for data storage, wear-resistant, highly transparent coat-

ings, synthesis of carbon nanotubes, quantum dots and
nanoparticles.1,3,6 In this pressure range, one can expect that
collisional ~ohmic! heating is a major power transfer chan-
nel, ambipolar diffusion being a major particle loss mecha-
nism. However, at pressures below 10 mTorr, ubiquitous for
deep micron ultrafine etching in ULSI manufacturing,3 our
model would be less accurate due to the increasing role of
nonlocal~collisionless! dissipative low-pressure effects.37

The estimate below shows that the relative contributions
of nonlocal ~collisionless! power transfer effects amount to
approximately 9% and 6% at 30 and 70 mTorr, respectively,
and our assumption about the dominance of a collisional
~ohmic! mechanism is fairly accurate. Indeed, the rates of
electron–neutral collisions at 30 and 70 mTorr andTe;2.5
eV amount to 2.123108 and 4.943108 s21, respectively.
The approximate rate of nonlocal rf power transfer can be
estimated by noting that the electron thermal velocity atTe

52.5 eV is VTe;6.173107 cm/s. The rf field penetration
length (g1

(2))21 appears to be 4 and 4.2 cm in the IOC plas-
mas sustained withI c520 A. In this case the plasma density
is 8.531011 and 1.831012 cm23, respectively~see Table II
for details!. The average electron traverse timete5VTeg1

(2)

is thus 6.531028 s21 at 30 mTorr and 6.831028 s21 at 70
mTorr, respectively. Hence,te!Trf , whereTrf52p/v, and
the rate of nonlocal~collisionless! electron heating can be
approximated as nst5VTe/2D, where D5(c/vpe)
3(VTe/pv)1/3.2,26 Accordingly, we havenst

(30 mTorr)53.21
3107 s21, whereasnst

(70 mTorr)54.943107 s21. The relative
contribution of the nonlocal electron heating mechanism
nst/(nst1nen) appears to be 0.09 and 0.06 at 30 and 70
mTorr, respectively. However, at low pressures~,10 mTorr!,
nonlocal heating can prevail over the ohmic one and has to
be thoroughly accounted for in improved discharge models.

The other issue to be investigated is the rf magnetic field
penetration due to essentially nonlinear effects.8,38,39In fact,
this effect can further improve uniformity of the generation
of rf currents throughout the chamber volume. Physically, in
the planar external-coil ICP geometry the nonlinear poloidal
currentsj er and j ez generate a strongly nonlinear azimuthal
magnetic fieldBf , which has no fundamental-frequency
Fourier component.39 This effect has recently been confirmed
experimentally.25 One can thus expect that the nonlinear
plasma response at higher frequencies will also persist in the
IOC configuration. Above all, finiteBf can result in en-
hanced penetration of the rf field due to secondary nonlinear
effects,39 which become more pronounced at lower operation
frequencies.23

The interesting feature of the IOC configuration is that
the poloidal rf current and hence, the azimuthal magnetic
field, are driven in a linear fashion at the fundamental fre-
quency and one can expect enhanced rf field penetration due
to primary nonlinear effects. Furthermore, the internal oscil-
lating current eliminates the nonuniformity of the rf power
density in the vicinity of the chamber axis, which is inherent
to the flat external coil ICP configurations.15

From a practical point of view, the IOC can easily be
generated by a sole rf generator, which can be regarded as an
advantage over the well-established IRC scheme, which re-
quires special sophisticated generators of rotating rf
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currents.19 In particular, the results on the oscillating mag-
netic field current drive in compact spherical tori21 and pre-
liminary experiments36 allow us to be optimistic about the
successful testing of the IOC principle in the near future.

VII. CONCLUSION

The ICPs sustained by internal rf unidirectional~with
spatially invariable phase! currents have been investigated.
The set of Maxwell’s equations has been used for the com-
putation of the electromagnetic field profiles in weakly ion-
ized dense plasmas of the rf discharge in argon. The power
transferred to the plasma electrons has been obtained assum-
ing electron–neutral collisions as a main mechanism for
power transfer and invoking the fluid plasma model. The
global discharge model has been used to calculate the mini-
mum rf power necessary to sustain the argon plasma with the
desired density. The electromagnetic field distribution, the
efficiency and uniformity of power deposition, as well as the
plasma properties have been compared with those in the ICP
sources with an external flat coil and the internal rotating
current sources with the same geometrical sizes. It has been
demonstrated that introducing the internal oscillating current
significantly improves the radial uniformity of power density
in the chamber and favors generation of high-density plas-
mas with lower rf power consumption. The configuration is
promising for thin film processes that require azimuthal pro-
filing of power deposition. Finally, the easy operational prin-
ciple and handling allow one to expect that the effect of the
unidirectional internal oscillating current on ICPs in a fully
metal cylindrical chamber will be tested experimentally in
the near future.
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