23,053 research outputs found

    Security of two-way quantum cryptography against asymmetric Gaussian attacks

    Full text link
    Recently, we have shown the advantages of two-way quantum communications in continuous variable quantum cryptography. Thanks to this new approach, two honest users can achieve a non-trivial security enhancement as long as the Gaussian interactions of an eavesdropper are independent and identical. In this work, we consider asymmetric strategies where the Gaussian interactions can be different and classically correlated. For several attacks of this kind, we prove that the enhancement of security still holds when the two-way protocols are used in direct reconciliation.Comment: Proceeding of the SPIE Conference "Quantum Communications and Quantum Imaging VI" - San Diego 2008. This paper is connected with arXiv:quant-ph/0611167 (for the last version see: Nature Physics 4, 726 (2008)

    Confidential direct communications: a quantum approach using continuous variables

    Full text link
    We consider the problem of privacy in direct communications, showing how quantum mechanics can be useful to guarantee a certain level of confidentiality. In particular, we review a continuous variable approach recently proposed by us [S. Pirandola et al., Europhys. Lett. 84, 20013 (2008)]. Here, we analyze the degree of privacy of this technique against a broader class of attacks, which includes non-Gaussian eavesdropping.Comment: Invited paper. Extension of results presented in arXiv:0802.0656 (REVTeX, 11 pages, 11 figures

    Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals.

    Get PDF
    Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline. A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia

    On the Evolution, Numbers, and Characteristics of Close-Binary Supersoft Sources

    Get PDF
    The ability to perform detailed evolutionary calculations is essential to the development of a well-defined and testable binary model. Unfortunately, traditional evolutionary calculations cannot be used to follow a significant fraction of possible close-binary supersoft sources (CBSSs). It is therefore important to examine the input physics carefully, to be sure that all relevant and potentially important physical processes are included. In this paper we continue a line of research begun last year, and explore the role that winds are expected to play in the evolution of CBSSs. We find that at least a subset of the systems that seemed to be candidates for common envelope evolution may survive, if radiation emitted by white dwarf drives winds from the system. We study the effects of winds on the binary evolution of CBSSs, and compute the number and characteristics of CBSSs expected to be presently active in galaxies such as our own or M31.Comment: 13 pages; figures included in 0.33 M postscript file; in Supersoft X-ray Sources, ed. J. Greiner (Springer-Verlag: Berlin) (1996

    Minimal qudit code for a qubit in the phase-damping channel

    Full text link
    Using the stabilizer formalism we construct the minimal code into a D-dimensional Hilbert space (qudit) to protect a qubit against phase damping. The effectiveness of this code is then studied by means of input-output fidelity.Comment: 9 pages, 3 figures. REVTe
    corecore