1,205 research outputs found
Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields
As a massive star evolves through multiple stages of nuclear burning on its
way to becoming a supernova, a complex, differentially rotating structure is
set up. Angular momentum is transported by a variety of classic instabilities,
and also by magnetic torques from fields generated by the differential
rotation. We present the first stellar evolution calculations to follow the
evolution of rotating massive stars including, at least approximately, all
these effects, magnetic and non-magnetic, from the zero-age main sequence until
the onset of iron-core collapse. The evolution and action of the magnetic
fields is as described by Spruit 2002 and a range of uncertain parameters is
explored. In general, we find that magnetic torques decrease the final rotation
rate of the collapsing iron core by about a factor of 30 to 50 when compared
with the non-magnetic counterparts. Angular momentum in that part of the
presupernova star destined to become a neutron star is an increasing function
of main sequence mass. That is, pulsars derived from more massive stars will
rotate faster and rotation will play a more dominant role in the star's
explosion. The final angular momentum of the core is determined - to within a
factor of two - by the time the star ignites carbon burning. For the lighter
stars studied, around 15 solar masses, we predict pulsar periods at birth near
15 ms, though a factor of two range is easily tolerated by the uncertainties.
Several mechanisms for additional braking in a young neutron star, especially
by fall back, are also explored.Comment: 32 pages, 3 figures (8 eps files), submitted to Ap
Solar differential rotation and meridional flow: The role of a subadiabatic tachocline for the Taylor-Proudman balance
We present a simple model for the solar differential rotation and meridional
circulation based on a mean field parameterization of the Reynolds stresses
that drive the differential rotation. We include the subadiabatic part of the
tachocline and show that this, in conjunction with turbulent heat conductivity
within the convection zone and overshoot region, provides the key physics to
break the Taylor-Proudman constraint, which dictates differential rotation with
contour lines parallel to the axis of rotation in case of an isentropic
stratification. We show that differential rotation with contour lines inclined
by 10 - 30 degrees with respect to the axis of rotation is a robust result of
the model, which does not depend on the details of the Reynolds stress and the
assumed viscosity, as long as the Reynolds stress transports angular momentum
toward the equator. The meridional flow is more sensitive with respect to the
details of the assumed Reynolds stress, but a flow cell, equatorward at the
base of the convection zone and poleward in the upper half of the convection
zone, is the preferred flow pattern.Comment: 15 pages, 7 figure
Magnetic fields generated by r-modes in accreting millisecond pulsars
In millisecond pulsars the existence of the Coriolis force allows the
development of the so-called Rossby oscillations (r-modes) which are know to be
unstable to emission of gravitational waves. These instabilities are mainly
damped by the viscosity of the star or by the existence of a strong magnetic
field. A fraction of the observed millisecond pulsars are known to be inside
Low Mass X-ray Binaries (LMXBs), systems in which a neutron star (or a black
hole) is accreting from a donor whose mass is smaller than 1 . Here we
show that the r-mode instabilities can generate strong toroidal magnetic fields
by inducing differential rotation. In this way we also provide an alternative
scenario for the origin of the magnetars.Comment: 6 pages, 3 figures, Proceedings conference "Theoretical Nuclear
Physics", Cortona October 200
Differential Rotation in Neutron Stars: Magnetic Braking and Viscous Damping
Diffferentially rotating stars can support significantly more mass in
equilibrium than nonrotating or uniformly rotating stars, according to general
relativity. The remnant of a binary neutron star merger may give rise to such a
``hypermassive'' object. While such a star may be dynamically stable against
gravitational collapse and bar formation, the radial stabilization due to
differential rotation is likely to be temporary. Magnetic braking and viscosity
combine to drive the star to uniform rotation, even if the seed magnetic field
and the viscosity are small. This process inevitably leads to delayed collapse,
which will be accompanied by a delayed gravitational wave burst and, possibly,
a gamma-ray burst. We provide a simple, Newtonian, MHD calculation of the
braking of differential rotation by magnetic fields and viscosity. The star is
idealized as a differentially rotating, infinite cylinder consisting of a
homogeneous, incompressible conducting gas. We solve analytically the simplest
case in which the gas has no viscosity and the star resides in an exterior
vacuum. We treat numerically cases in which the gas has internal viscosity and
the star is embedded in an exterior, low-density, conducting medium. Our
evolution calculations are presented to stimulate more realistic MHD
simulations in full 3+1 general relativity. They serve to identify some of the
key physical and numerical parameters, scaling behavior and competing
timescales that characterize this important process.Comment: 11 pages. To appear in ApJ (November 20, 2000
On the Maximum Mass of Differentially Rotating Neutron Stars
We construct relativistic equilibrium models of differentially rotating
neutron stars and show that they can support significantly more mass than their
nonrotating or uniformly rotating counterparts. We dynamically evolve such
``hypermassive'' models in full general relativity and show that there do exist
configurations which are dynamically stable against radial collapse and bar
formation. Our results suggest that the remnant of binary neutron star
coalescence may be temporarily stabilized by differential rotation, leading to
delayed collapse and a delayed gravitational wave burst.Comment: 4 pages, 2 figures, uses emulateapj.sty; to appear in ApJ Letter
AD Mensae: a dwarf nova in the period gap
AD Men was classified as a probable long-period dwarf nova based on its
long-term variability. Recent spectroscopic data instead suggested a
short-period system. With the here presented observations we aim at clarifying
its nature. Time--resolved photometry and spectroscopy has been used to get
information on the orbital period of this system. The light curve shows the
typical flickering and a clear hump--like periodic modulation with an average
amplitude of 0.3mag and a period of P=2.20(02)h. The radial velocity
measurements of the Halpha emission line confirm this value as the orbital
period. AD Men is thus located at the lower end of, but clearly inside, the gap
of the period distribution of cataclysmic variables, making it one of only 11
dwarf novae in this important period range.Comment: 5 pages, 6 figures, accepted by A&
Hydrostatic Expansion and Spin Changes During Type I X-Ray Bursts
We present calculations of the spin-down of a neutron star atmosphere due to
hydrostatic expansion during a Type I X-ray burst. We show that (i) Cumming and
Bildsten overestimated the spin-down of rigidly-rotating atmospheres by a
factor of two, and (ii) general relativity has a small (5-10%) effect on the
angular momentum conservation law. We rescale our results to different neutron
star masses, rotation rates and equations of state, and present some detailed
rotational profiles. Comparing with recent observations of large frequency
shifts in MXB 1658-298 and 4U 1916-053, we find that the spin-down expected if
the atmosphere rotates rigidly is a factor of two to three less than the
observed values. If differential rotation is allowed to persist, we find that
the upper layers of the atmosphere spin down by an amount comparable to the
observed values; however, there is no compelling reason to expect the observed
spin frequency to be that of only the outermost layers. We conclude that
hydrostatic expansion and angular momentum conservation alone cannot account
for the largest frequency shifts observed during Type I bursts.Comment: Submitted to the Astrophysical Journal (13 pages, including 4
figures
General Relativistic Rossby-Haurwitz waves of a slowly and differentially rotating fluid shell
We show that, at first order in the angular velocity, the general
relativistic description of Rossby-Haurwitz waves (the analogues of r-waves on
a thin shell) can be obtained from the corresponding Newtonian one after a
coordinate transformation. As an application, we show that the results recently
obtained by Rezzolla and Yoshida (2001) in the analysis of Newtonian
Rossby-Haurwitz waves of a slowly and differentially rotating, fluid shell
apply also in General Relativity, at first order in the angular velocity.Comment: 4 pages. Comment to Class. Quantum Grav. 18(2001)L8
Generation of strong magnetic fields by r-modes in millisecond accreting neutron stars: induced deformations and gravitational wave emission
Differential rotation induced by the r-mode instability can generate very
strong toroidal fields in the core of accreting, millisecond spinning neutron
stars. We introduce explicitly the magnetic damping term in the evolution
equations of the r-modes and solve them numerically in the Newtonian limit, to
follow the development and growth of the internal magnetic field. We show that
the strength of the latter can reach large values, G, in the
core of the fastest accreting neutron stars. This is strong enough to induce a
significant quadrupole moment of the neutron star mass distribution,
corresponding to an ellipticity |\epsilon_B}| \sim 10^{-8}. If the symmetry
axis of the induced magnetic field is not aligned with the spin axis, the
neutron star radiates gravitational waves. We suggest that this mechanism may
explain the upper limit of the spin frequencies observed in accreting neutron
stars in Low Mass X-Ray Binaries. We discuss the relevance of our results for
the search of gravitational waves.Comment: 11 pages, 8 figure
Rossby-Haurwitz waves of a slowly and differentially rotating fluid shell
Recent studies have raised doubts about the occurrence of r modes in
Newtonian stars with a large degree of differential rotation. To assess the
validity of this conjecture we have solved the eigenvalue problem for
Rossby-Haurwitz waves (the analogues of r waves on a thin-shell) in the
presence of differential rotation. The results obtained indicate that the
eigenvalue problem is never singular and that, at least for the case of a
thin-shell, the analogues of r modes can be found for arbitrarily large degrees
of differential rotation. This work clarifies the puzzling results obtained in
calculations of differentially rotating axi-symmetric Newtonian stars.Comment: 8pages, 3figures. Submitted to CQ
- …
