5 research outputs found

    Quantification of BSA-loaded chitosan/oligonucleotide nanoparticles using reverse-phase high-performance liquid chromatography

    No full text
    © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. Therapeutic proteins are administered subcutaneously because of their instability in the gastrointestinal tract. Current research suggests that polymeric-based nanoparticles, microparticles and liposomes are ideal nanocarriers to encapsulate proteins for disease management. In order to develop a successful drug delivery system, it is crucial to determine drug release profile and stability. However, the non-active excipients in polymeric formulations can influence the quantification of proteins in analytical techniques. This study investigated the effect of nine common polymers on quantification of bovine serum albumin (BSA) using RP-HPLC method. The technique offers advantages such as short analytical time, high accuracy and selectivity. In the meantime, the technique can be employed to separate proteins including BSA, insulin and pigment epithelium-derived factor (PEDF). Furthermore, the RP-HPLC method was applied to quantify the drug release pattern of a novel BSA-loaded nanoparticulate formulation in simulated gastric and intestinal fluids. The nanoparticles were formulated by natural polymer (chitosan) and oligonucleotide (Dz13Scr) using complex coacervation. The prepared particles were found to have small size (337.87 nm), low polydispersity index (0.338) and be positively charged (10.23 mV). The in vitro drug release patterns were characterised using the validated RP-HPLC method over 12 h. [Figure not available: see fulltext.]

    Advanced trends in protein and peptide drug delivery: a special emphasis on aquasomes and microneedles techniques

    No full text

    Challenges and Future Prospects for the Delivery of Biologics: Oral Mucosal, Pulmonary, and Transdermal Routes

    No full text
    corecore