49 research outputs found

    Conditional müller cell ablation causes independent neuronal and vascular pathologies in a novel transgenic model

    Get PDF
    Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium-derived factor. Intravitreal injection of ciliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuropro-tective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the CNS associated with glial dysfunction

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Variation in the Glucose Transporter gene <i>SLC2A2 </i>is associated with glycaemic response to metformin

    Get PDF
    Metformin is the first-line antidiabetic drug with over 100 million users worldwide, yet its mechanism of action remains unclear1. Here the Metformin Genetics (MetGen) Consortium reports a three-stage genome-wide association study (GWAS), consisting of 13,123 participants of different ancestries. The C allele of rs8192675 in the intron of SLC2A2, which encodes the facilitated glucose transporter GLUT2, was associated with a 0.17% (P = 6.6 × 10−14) greater metformin-induced reduction in hemoglobin A1c (HbA1c) in 10,577 participants of European ancestry. rs8192675 was the top cis expression quantitative trait locus (cis-eQTL) for SLC2A2 in 1,226 human liver samples, suggesting a key role for hepatic GLUT2 in regulation of metformin action. Among obese individuals, C-allele homozygotes at rs8192675 had a 0.33% (3.6 mmol/mol) greater absolute HbA1c reduction than T-allele homozygotes. This was about half the effect seen with the addition of a DPP-4 inhibitor, and equated to a dose difference of 550 mg of metformin, suggesting rs8192675 as a potential biomarker for stratified medicine

    New and Emerging Research on Solute Carrier and ATP Binding Cassette Transporters in Drug Discovery and Development: Outlook From the International Transporter Consortium.

    No full text
    Enabled by a plethora of new technologies, research in membrane transporters has exploded in the past decade. The goal of this state-of-the-art article is to describe recent advances in research on membrane transporters that are particularly relevant to drug discovery and development. This review covers advances in basic, translational, and clinical research that has led to an increased understanding of membrane transporters at all levels. At the basic level, we describe the available crystal structures of membrane transporters in both the solute carrier (SLC) and ATP binding cassette superfamilies, which has been enabled by the development of cryogenic electron microscopy methods. Next, we describe new research on lysosomal and mitochondrial transporters as well as recently deorphaned transporters in the SLC superfamily. The translational section includes a summary of proteomic research, which has led to a quantitative understanding of transporter levels in various cell types and tissues and new methods to modulate transporter function, such as allosteric modulators and targeted protein degraders of transporters. The section ends with a review of the effect of the gut microbiome on modulation of transporter function followed by a presentation of 3D cell cultures, which may enable in vivo predictions of transporter function. In the clinical section, we describe new genomic and pharmacogenomic research, highlighting important polymorphisms in transporters that are clinically relevant to many drugs. Finally, we describe new clinical tools, which are becoming increasingly available to enable precision medicine, with the application of tissue-derived small extracellular vesicles and real-world biomarkers

    Drugs in COVID-19 Clinical Trials: Predicting Transporter-Mediated Drug-Drug Interactions Using In Vitro Assays and Real-World Data.

    No full text
    Numerous drugs are currently under accelerated clinical investigation for the treatment of coronavirus disease 2019 (COVID-19); however, well-established safety and efficacy data for these drugs are limited. The goal of this study was to predict the potential of 25 small molecule drugs in clinical trials for COVID-19 to cause clinically relevant drug-drug interactions (DDIs), which could lead to potential adverse drug reactions (ADRs) with the use of concomitant medications. We focused on 11 transporters, which are targets for DDIs. In vitro potency studies in membrane vesicles or HEK293 cells expressing the transporters coupled with DDI risk assessment methods revealed that 20 of the 25 drugs met the criteria from regulatory authorities to trigger consideration of a DDI clinical trial. Analyses of real-world data from electronic health records, including a database representing nearly 120,000 patients with COVID-19, were consistent with several of the drugs causing transporter-mediated DDIs (e.g., sildenafil, chloroquine, and hydroxychloroquine). This study suggests that patients with COVID-19, who are often older and on various concomitant medications, should be carefully monitored for ADRs. Future clinical studies are needed to determine whether the drugs that are predicted to inhibit transporters at clinically relevant concentrations, actually result in DDIs

    Mig6 expression is upregulated by elevated phospho-AKT in SCC-R cells.

    No full text
    <p><b>A</b>) Immunoblot analysis of phospho-AKT, total AKT, and loading control β-actin in SCC-S and SCC-R cells. <b>B</b>) SCC-R cells were treated with AKI (AKT1/2 kinase inhibitor, at 5 or 10 µM), U0126 (MEK1/2 inhibitor, at 5 or 10 µM), or DMSO (control) for 24 hrs and subjected to immunoblot analysis with indicated antibodies. <b>C</b>) SCC-R cells were treated with LY294002 (PI3K inhibitor, at 5 or 10 µM), rapamycin (mTOR inhibitor, at 1 or 2 µM) or DMSO (control) for 24 hrs and subjected to immunoblot analysis with the indicated antibodies. <b>D</b>) SCC-R cells were transfected with either scrambled siRNA or siRNA targeting PTEN for 48 hrs and subjected to immunoblot analysis. <b>E</b>) SCC-R cells were treated with 0.2 or 1 µM erlotinib (T0.2, T1, respectively) for 24 hrs, or pretreated with 0.2 or 1 µM erlotinib for 30 min and then co-treated with 10 ng/ml EGF for an additional 24 hrs. Mig6 levels were then evaluated with immunoblot analysis. <b>F</b>) SCC-R cells were treated with 10 µM LY294002, 10 µM AKT1/2 kinase inhibitor, 1 µM rapamycin, or 10 µM U0126 for 24 hrs. Cells were then treated with 10 ng/ml EGF for 30 min to induce EGFR phosphorylation and subjected to immunoblot analysis. <b>G</b>) Densitometric analysis of phospho-EGFR/total EGFR. DMSO-treated samples were arbitrarily assigned a value of 1 and values of the remaining samples represent fold changes of phospho-EGFR per EGFR molecule. Note that fresh Mig6 antibody recognizes a nonspecific band above the Mig6 protein, which gradually disappears after antibody re-suing or recycling.</p

    Mig6/EGFR ratio correlates with the response of patients to gefitinib.

    No full text
    <p><b>A</b>) Selected pictures of IHC staining against Mig6 and EGFR. <b>B</b>) Box plot of Mig6/EGFR ratio distribution. <b>C</b>) The response of patients to gefitinib treatment. PD, progressive disease; SD, stable disease; PR, partial response. <b>D</b>) Kaplan-Meier survival curves showed that patients with low Mig6/EGFR ratio survived significantly longer than the high ratio patients and EGFR negative patients (Log-Rank test <i>P</i> = 0.0112). <b>E</b>) The number of patients as risk at the time point of 0, 100, 200, 400 and 800 days was displayed in the table.</p
    corecore