17 research outputs found

    ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA

    Get PDF
    Mammals have nine different homologues (ALKBH1–9) of the Escherichia coli DNA repair demethylase AlkB. ALKBH2 is a genuine DNA repair enzyme, but the in vivo function of the other ALKBH proteins has remained elusive. It was recently shown that ALKBH8 contains an additional transfer RNA (tRNA) methyltransferase domain, which generates the wobble nucleoside 5-methoxycarbonylmethyluridine (mcm5U) from its precursor 5-carboxymethyluridine (cm5U). In this study, we report that (R)- and (S)-5-methoxycarbonylhydroxymethyluridine (mchm5U), hydroxylated forms of mcm5U, are present in mammalian , and , respectively, representing the first example of a diastereomeric pair of modified RNA nucleosides. Through in vitro and in vivo studies, we show that both diastereomers of mchm5U are generated from mcm5U, and that the AlkB domain of ALKBH8 specifically hydroxylates mcm5U into (S)-mchm5U in . These findings expand the function of the ALKBH oxygenases beyond nucleic acid repair and increase the current knowledge on mammalian wobble uridine modifications and their biogenesis

    Schizosaccharomyces pombe Ofd2 Is a Nuclear 2-Oxoglutarate and Iron Dependent Dioxygenase Interacting with Histones

    Get PDF
    2-oxoglutarate (2OG) dependent dioxygenases are ubiquitous iron containing enzymes that couple substrate oxidation to the conversion of 2OG to succinate and carbon dioxide. They participate in a wide range of biological processes including collagen biosynthesis, fatty acid metabolism, hypoxic sensing and demethylation of nucleic acids and histones. Although substantial progress has been made in elucidating their function, the role of many 2OG dioxygenases remains enigmatic. Here we have studied the 2OG and iron (Fe(II)) dependent dioxygenase Ofd2 in Schizosaccharomyces pombe, a member of the AlkB subfamily of dioxygenases. We show that decarboxylation of 2OG by recombinant Ofd2 is dependent on Fe(II) and a histidine residue predicted to be involved in Fe(II) coordination. The decarboxylase activity of Ofd2 is stimulated by histones, and H2A has the strongest effect. Ofd2 interacts with all four core histones, however, only very weakly with H4. Our results define a new subclass of AlkB proteins interacting with histones, which also might comprise some of the human AlkB homologs with unknown function

    Mice Lacking Alkbh1 Display Sex-Ratio Distortion and Unilateral Eye Defects

    Get PDF
    Escherichia coli AlkB is a 2-oxoglutarate- and iron-dependent dioxygenase that reverses alkylated DNA damage by oxidative demethylation. Mouse AlkB homolog 1 (Alkbh1) is one of eight members of the newly discovered family of mammalian dioxygenases.In the present study we show non-Mendelian inheritance of the Alkbh1 targeted allele in mice. Both Alkbh1(-/-) and heterozygous Alkbh1(+/-) offspring are born at a greatly reduced frequency. Additionally, the sex-ratio is considerably skewed against female offspring, with one female born for every three to four males. Most mechanisms that cause segregation distortion, act in the male gametes and affect male fertility. The skewing of the sexes appears to be of paternal origin, and might be set in the pachythene stage of meiosis during spermatogenesis, in which Alkbh1 is upregulated more than 10-fold. In testes, apoptotic spermatids were revealed in 5-10% of the tubules in Alkbh1(-/-) adults. The deficiency of Alkbh1 also causes misexpression of Bmp2, 4 and 7 at E11.5 during embryonic development. This is consistent with the incompletely penetrant phenotypes observed, particularly recurrent unilateral eye defects and craniofacial malformations.Genetic and phenotypic assessment suggests that Alkbh1 mediates gene regulation in spermatogenesis, and that Alkbh1 is essential for normal sex-ratio distribution and embryonic development in mice

    Alkbh2 protects against lethality and mutation in primary mouse embryonic fibroblasts

    No full text
    Alkylating agents modify DNA and RNA forming adducts that disrupt replication and transcription, trigger cell cycle checkpoints and/or initiate apoptosis. If left unrepaired, some of the damage can be cytotoxic and/or mutagenic. In Escherichia coli, the alkylation repair protein B (AlkB) provides one form of resistance to alkylating agents by eliminating mainly 1-methyladenine and 3-methylcytosine, thereby increasing survival and preventing mutation. To examine the biological role of the mammalian AlkB homologs Alkbh2 and Alkbh3, which both have similar enzymatic activities to that of AlkB, we evaluated the survival and mutagenesis of primary Big Blue mouse embryonic fibroblasts (MEFs) that had targeted deletions in the Alkbh2 or Alkbh3 genes. Both Alkbh2- and Alkbh3-deficient MEFs were ~2-fold more sensitive to methyl methanesulfonate (MMS) induced cytotoxicity compared to the wild type control cells. Spontaneous mutant frequencies were similar for the wild type, Alkbh2(−/−) and Alkbh3(−/−) MEFs (average-1.3×10(−5)). However, despite the similar survival of the two mutant MEFs after MMS treatment, only the Alkbh2-deficient MEFs showed a statistically significant increase in mutant frequency compared to wild type MEFs after MMS treatment. Therefore, although both Alkbh2 and Alkbh3 can protect against MMS-induced cell death, only Alkbh2 shows statistically significant protection of MEF DNA against mutations following treatment with this exogenous methylating agent
    corecore