856 research outputs found

    Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)

    Get PDF
    Submitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingNeutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors

    Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)

    Full text link
    Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors.Comment: Submitted for the January 2014 Fermilab Physics Advisory Committee meetin

    Robust signatures of solar neutrino oscillation solutions

    Get PDF
    With the goal of identifying signatures that select specific neutrino oscillation parameters, we test the robustness of global oscillation solutions that fit all the available solar and reactor experimental data. We use three global analysis strategies previously applied by different authors and also determine the sensitivity of the oscillation solutions to the critical nuclear fusion cross section, S_{17}(0), for the production of 8B. The favored solutions are LMA, LOW, and VAC in order of g.o.f. The neutral current to charged current ratio for SNO is predicted to be 3.5 +- 0.6 (1 sigma), which is separated from the no-oscillation value of 1.0 by much more than the expected experimental error. The predicted range of the day-night difference in charged current rates is (8.2 +- 5.2)% and is strongly correlated with the day-night effect for neutrino-electron scattering. A measurement by SNO of either a NC to CC ratio > 3.3 or a day-night difference > 10%, would favor a small region of the currently allowed LMA neutrino parameter space. The global oscillation solutions predict a 7Be neutrino-electron scattering rate in BOREXINO and KamLAND in the range 0.66 +- 0.04 of the BP00 standard solar model rate, a prediction which can be used to test both the solar model and the neutrino oscillation theory. Only the LOW solution predicts a large day-night effect(< 42%) in BOREXINO and KamLAND. For the KamLAND reactor experiment, the LMA solution predicts 0.44 of the standard model rate; we evaluate 1 sigma and 3 sigma uncertainties and the first and second moments of the energy spectrum.Comment: Included predictions for KamLAND reactor experiment and updated to include 1496 days of Super-Kamiokande observation

    T1 mapping and T2 mapping at 3T for quantifying the area-at-risk in reperfused STEMI patients

    Get PDF
    BACKGROUND: Whether T1-mapping cardiovascular magnetic resonance (CMR) can accurately quantify the area-at-risk (AAR) as delineated by T2 mapping and assess myocardial salvage at 3T in reperfused ST-segment elevation myocardial infarction (STEMI) patients is not known and was investigated in this study. METHODS: 18 STEMI patients underwent CMR at 3T (Siemens Bio-graph mMR) at a median of 5 (4–6) days post primary percutaneous coronary intervention using native T1 (MOLLI) and T2 mapping (WIP #699; Siemens Healthcare, UK). Matching short-axis T1 and T2 maps covering the entire left ventricle (LV) were assessed by two independent observers using manual, Otsu and 2 standard deviation thresholds. Inter- and intra-observer variability, correlation and agreement between the T1 and T2 mapping techniques on a per-slice and per patient basis were assessed. RESULTS: A total of 125 matching T1 and T2 mapping short-axis slices were available for analysis from 18 patients. The acquisition times were identical for the T1 maps and T2 maps. 18 slices were excluded due to suboptimal image quality. Both mapping sequences were equally prone to susceptibility artifacts in the lateral wall and were equally likely to be affected by microvascular obstruction requiring manual correction. The Otsu thresholding technique performed best in terms of inter- and intra-observer variability for both T1 and T2 mapping CMR. The mean myocardial infarct size was 18.8 ± 9.4 % of the LV. There was no difference in either the mean AAR (32.3 ± 11.5 % of the LV versus 31.6 ± 11.2 % of the LV, P = 0.25) or myocardial salvage index (0.40 ± 0.26 versus 0.39 ± 0.27, P = 0.20) between the T1 and T2 mapping techniques. On a per-slice analysis, there was an excellent correlation between T1 mapping and T2 mapping in the quantification of the AAR with an R2 of 0.95 (P < 0.001), with no bias (mean ± 2SD: bias 0.0 ± 9.6 %). On a per-patient analysis, the correlation and agreement remained excellent with no bias (R2 0.95, P < 0.0001, bias 0.7 ± 5.1 %). CONCLUSIONS: T1 mapping CMR at 3T performed as well as T2 mapping in quantifying the AAR and assessing myocardial salvage in reperfused STEMI patients, thereby providing an alternative CMR measure of the the AAR

    Resonant leptogenesis in a predictive SO(10) grand unified model

    Full text link
    An SO(10) grand unified model considered previously by the authors featuring lopsided down quark and charged lepton mass matrices is successfully predictive and requires that the lightest two right-handed Majorana neutrinons be nearly degenerate in order to obtain the LMA solar neutrino solution. Here we use this model to test its predictions for baryogenesis through resonant-enhanced leptogenesis. With the conventional type I seesaw mechanism, the best predictions for baryogenesis appear to fall a factor of three short of the observed value. However, with a proposed type III seesaw mechanism leading to three pairs of massive pseudo-Dirac neutrinos, resonant leptogenesis is decoupled from the neutrino mass and mixing issues with successful baryogenesis easily obtained.Comment: 22 pages including 1 figure; published version with reference adde

    Status of atmospheric neutrino(mu)<-->neutrino(tau) oscillations and decoherence after the first K2K spectral data

    Get PDF
    We review the status of nu_mu-->nu_tau flavor transitions of atmospheric neutrinos in the 92 kton-year data sample collected in the first phase of the Super-Kamiokande (SK) experiment, in combination with the recent spectral data from the KEK-to-Kamioka (K2K) accelerator experiment (including 29 single-ring muon events). We consider a theoretical framework which embeds flavor oscillations plus hypothetical decoherence effects, and where both standard oscillations and pure decoherence represent limiting cases. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at 1 sigma (and d.o.f.=1) as: Delta m^2=(2.6 +- 0.4)x10^{-3} eV^2 and sin^2(2theta)=1.00+0.00-0.05. As compared with standard oscillations, the case of pure decoherence is disfavored, although it cannot be ruled out yet. In the general case, additional decoherence effects in the nu_mu-->nu_tau channel do not improve the fit to the SK and K2K data, and upper bounds can be placed on the associated decoherence parameter. Such indications, presently dominated by SK, could be strengthened by further K2K data, provided that the current spectral features are confirmed with higher statistics. A detailed description of the statistical analysis of SK and K2K data is also given, using the so-called ``pull'' approach to systematic uncertainties.Comment: 18 pages (RevTeX) + 12 figures (PostScript
    corecore