33 research outputs found

    Conserved conformational changes in the ATPase cycle of human Hsp90

    No full text
    The dimeric molecular chaperone Hsp90 is required for the activation and stabilization of hundreds of substrate proteins, many of which participate in signal transduction pathways. The activation process depends on the hydrolysis of ATP by Hsp90. Hsp90 consists of a C-terminal dimerization domain, a middle domain, which may interact with substrate protein, and an N-terminal ATP-binding domain. A complex cycle of conformational changes has been proposed for the ATPase cycle of yeast Hsp90, where a critical step during the reaction requires the transient N-terminal dimerization of the two protomers. The ATPase cycle of human Hsp90 is less well understood, and significant differences have been proposed regarding key mechanistic aspects. ATP hydrolysis by human Hsp90alpha and Hsp90beta is 10-fold slower than that of yeast Hsp90. Despite these differences, our experiments suggest that the underlying enzymatic mechanisms are highly similar. In both cases, a concerted conformational rearrangement involving the N-terminal domains of both subunits is controlling the rate of ATP turnover, and N-terminal cross-talk determines the rate-limiting steps. Furthermore, similar to yeast Hsp90, the slow ATP hydrolysis by human Hsp90s can be stimulated up to over 100-fold by the addition of the co-chaperone Aha1 from either human or yeast origin. Together, our results show that the basic principles of the Hsp90 ATPase reaction are conserved between yeast and humans, including the dimerization of the N-terminal domains and its regulation by the repositioning of the ATP lid from its original position to a catalytically competent one

    Small Molecule Inhibitors of the Programmed Cell Death 1 Programmed Death Ligand 1 PD 1 PD L1 Interaction via Transiently Induced Protein States and Dimerization of PD L1

    Get PDF
    Blockade of the PD-1/PD-L1 immune checkpoint pathway with monoclonal antibodies has provided significant advances in cancer treatment. The antibody-based immunotherapies carry a number of disadvantages such as the high cost of the antibodies, their limited half-life, and immunogenicity. Development of small-molecule PD-1/PD-L1 inhibitors that could overcome these drawbacks is slow because of the incomplete structural information for this pathway. The first chemical PD-1/PD-L1 inhibitors have been recently disclosed by Bristol-Myers Squibb. Here we present NMR and X-ray characterization for the two classes of these inhibitors. The X-ray structures of the PD-L1/inhibitor complexes reveal one inhibitor molecule located at the center of the PD-L1 homodimer, filling a deep hydrophobic channel-like pocket between two PD-L1 molecules. Derivatives of (2-methyl-3-biphenylyl)methanol exhibit the structures capped on one side of the channel, whereas the compounds based on [3-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-methylphenyl]methanol induce an enlarged interaction interface that results in the open "face-back" tunnel through the PD-L1 dimer

    The relationship between cation ions and polysaccharide on the floc formation of synthetic and activated sludge

    Get PDF
    The tumor suppressor protein p53, the "guardian of the genome", is inactivated in nearly all cancer types by mutations in the TP53 gene or by overexpression of its negative regulators, oncoproteins MDM2/MDMX. Recovery of p53 function by disrupting the p53-MDM2/MDMX interaction using small-molecule antagonists could provide an efficient nongenotoxic anticancer therapy. Here we present the syntheses, activities, and crystal structures of the p53-MDM2/MDMX inhibitors based on the 1,4,5-trisubstituted imidazole scaffold which are appended with aliphatic linkers that enable coupling to bioactive carriers. The compounds have favorable properties at both biochemical and cellular levels. The most effective compound 19 is a tight binder of MDM2 and activates p53 in cancer cells that express the wild-type p53, leading to cell cycle arrest and growth inhibition. Crystal structures reveal that compound 19 induces MDM2 dimerization via the aliphatic linker. This unique dimerization-binding mode opens new prospects for the optimization of the p53-MDM2/MDMX inhibitors and conjugation with bioactive carriers
    corecore