823 research outputs found
Faktor-faktor yang Berhubungan dengan Status Gizi Buruk pada Balita di Kota Semarang Tahun 2017 (Studi di Rumah Pemulihan Gizi Banyumanik Kota Semarang)
Severe acute malnutrition is a condition where nutritional deficiencies are seen based on nutritional status that is below the average standard determined based on the anthropometric indicator of body weight by height (WHZ)) with z-score <-3 SD and presence or absence of edema. The purpose of this study is to determine the factors associated with malnutrition status in under five child in Nutrition House of Semarang City. The type of research used is descriptive analytic quantitative research with cross sectional method. Population in this research is all mother and child who undergo recovery at Home Nutrition by sampling technique using total sampling technique that is 20. Anthropometric measurements were performed to calculate z-scores, filling out questionnaires, food recalls and food and non-family food expenditure forms. After doing the research, it is known that child suffering from severe acute malnutrition based on indicator WHZ is as many 11 people (55%). The results showed that variables associated with nutrition status were energy consumption level (p = 0,002), protein consumption (p = 0,04), and infectious disease (p = 0,000). While the variables associated with the level of energy and protein consumption is maternal nutrition knowledge and family economic status variables (p = 0.001)
Vortices on a superconducting nanoshell: phase diagram and dynamics
In superconductors, the search for special vortex states such as giant
vortices focuses on laterally confined or nanopatterned thin superconducting
films, disks, rings, or polygons. We examine the possibility to realize giant
vortex states and states with non-uniform vorticity on a superconducting
spherical nanoshell, due to the interplay of the topology and the applied
magnetic field. We derive the phase diagram and identify where, as a function
of the applied magnetic field, the shell thickness and the shell radius, these
different vortex phases occur. Moreover, the curved geometry allows these
states (or a vortex lattice) to coexist with a Meissner state, on the same
curved film. We have examined the dynamics of the decay of giant vortices or
states with non-uniform vorticity into a vortex lattice, when the magnetic
field is adapted so that a phase boundary is crossed.Comment: 21 pages, 9 figure
The effect of pressure on statics, dynamics and stability of multielectron bubbles
The effect of pressure and negative pressure on the modes of oscillation of a
multi-electron bubble in liquid helium is calculated. Already at low pressures
of the order of 10-100 mbar, these effects are found to significantly modify
the frequencies of oscillation of the bubble. Stabilization of the bubble is
shown to occur in the presence of a small negative pressure, which expands the
bubble radius. Above a threshold negative pressure, the bubble is unstable.Comment: 4 pages, 2 figures, accepted for publication in Physical Review
Letter
Sonoluminescence and collapse dynamics of multielectron bubbles in helium
Multielectron bubbles (MEBs) differ from gas-filled bubbles in that it is the
Coulomb repulsion of a nanometer thin layer of electrons that forces the bubble
open rather than the pressure of an enclosed gas. We analyze the implosion of
MEBs subjected to a pressure step, and find that despite the difference in the
underlying processes the collapse dynamics is similar to that of gas-filled
bubbles. When the MEB collapses, the electrons inside it undergo strong
accelerations, leading to the emission of radiation. This type of
sonoluminescence does not involve heating and ionisation of any gas inside the
bubble. We investigate the conditions necessary to obtain sonoluminescence from
multielectron bubbles and calculate the power spectrum of the emitted
radiation.Comment: 6 figure
Variational Monte Carlo study of the ground state properties and vacancy formation energy of solid para-H2 using a shadow wave function
A Shadow Wave Function (SWF) is employed along with Variational Monte Carlo
techniques to describe the ground state properties of solid molecular
para-hydrogen. The study has been extended to densities below the equilibrium
value, to obtain a parameterization of the SWF useful for the description of
inhomogeneous phases. We also present an estimate of the vacancy formation
energy as a function of the density, and discuss the importance of relaxation
effects near the vacant site
Limits to Sympathetic Evaporative Cooling of a Two-Component Fermi Gas
We find a limit cycle in a quasi-equilibrium model of evaporative cooling of
a two-component fermion gas. The existence of such a limit cycle represents an
obstruction to reaching the quantum ground state evaporatively. We show that
evaporatively the \beta\mu ~ 1. We speculate that one may be able to cool an
atomic fermi gas further by photoassociating dimers near the bottom of the
fermi sea.Comment: Submitted to Phys. Rev
Adsorption and two-body recombination of atomic hydrogen on He-He mixture films
We present the first systematic measurement of the binding energy of
hydrogen atoms to the surface of saturated He-He mixture films.
is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the
population of the ground surface state of He grows from zero to
cm, yielding the value K cm
for the mean-field parameter of H-He interaction in 2D. The experiments
were carried out with overall He concentrations ranging from 0.1 ppm to 5 %
as well as with commercial and isotopically purified He at temperatures
70...400 mK. Measuring by ESR the rate constants and for
second-order recombination of hydrogen atoms in hyperfine states and we
find the ratio to be independent of the He content and to
grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys.
Rev. Let
Solid molecular hydrogen: The Broken Symmetry Phase
By performing constant-pressure variable-cell ab initio molecular dynamics
simulations we find a quadrupolar orthorhombic structure, of symmetry,
for the broken symmetry phase (phase II) of solid H2 at T=0 and P =110 - 150
GPa. We present results for the equation of state, lattice parameters and
vibronic frequencies, in very good agreement with experimental observations.
Anharmonic quantum corrections to the vibrational frequencies are estimated
using available data on H2 and D2. We assign the observed modes to specific
symmetry representations.Comment: 5 pages (twocolumn), 4 Postscript figures. To appear in Phys. Rev.
Let
Bose-Einstein condensation in a one-dimensional interacting system due to power-law trapping potentials
We examine the possibility of Bose-Einstein condensation in one-dimensional
interacting Bose gas subjected to confining potentials of the form , in which , by solving the
Gross-Pitaevskii equation within the semi-classical two-fluid model. The
condensate fraction, chemical potential, ground state energy, and specific heat
of the system are calculated for various values of interaction strengths. Our
results show that a significant fraction of the particles is in the lowest
energy state for finite number of particles at low temperature indicating a
phase transition for weakly interacting systems.Comment: LaTeX, 6 pages, 8 figures, uses grafik.sty (included), to be
published in Phys. Rev.
Adsorption of para-Hydrogen on Krypton pre-plated graphite
Adsorption of para-Hydrogen on the surface of graphite pre-plated with a
single layer of atomic krypton is studied thoretically by means of Path
Integral Ground State Monte Carlo simulations. We compute energetics and
density profiles of para-hydrogen, and determine the structure of the adsorbed
film for various coverages. Results show that there are two thermodynamically
stable monolayer phases of para-hydrogen, both solid. One is commensurate with
the krypton layer, the other is incommensurate. No evidence is seen of a
thermodynamically stable liquid phase, at zero temperature. These results are
qualitatively similar to what is seen for for para-hydrogen on bare graphite.
Quantum exchanges of hydrogen molecules are suppressed in this system.Comment: 12 pages, 6 figures, to appear in the proceedings of "Advances in
Computational Many-Body Physics", Banff, Alberta (Canada), January 13-16 200
- …
