11 research outputs found

    Coherent and incoherent bands in La and Rh doped Sr3Ir2O7

    Full text link
    In Sr2IrO4 and Sr3Ir2O7, correlations, magnetism and spin-orbit coupling compete on similar energy scales, creating a new context to study metal-insulator transitions (MIT). We use here Angle-Resolved photoemission to investigate the MIT as a function of hole and electron doping in Sr3Ir2O7, obtained respectively by Ir/Rh and Sr/La substitutions. We show that there is a clear reduction as a function of doping of the gap between a lower and upper band on both sides of the Fermi level, from 0.2eV to 0.05eV. Although these two bands have a counterpart in band structure calculations, they are characterized by a very different degree of coherence. The upper band exhibits clear quasiparticle peaks, while the lower band is very broad and loses weight as a function of doping. Moreover, their ARPES spectral weights obey different periodicities, reinforcing the idea of their different nature. We argue that a very similar situation occurs in Sr2IrO4 and conclude that the physics of the two families is essentially the same

    Scanning tunneling spectroscopy study of the proximity effect in a disordered two-dimensional metal

    Full text link
    The proximity effect between a superconductor and a highly diffusive two-dimensional metal is revealed in a scanning tunneling spectroscopy experiment. The in situ elaborated samples consist of superconducting single crystalline Pb islands interconnected by a nonsuperconducting atomically thin disordered Pb wetting layer. In the vicinity of each superconducting island the wetting layer acquires specific tunneling characteristics which reflect the interplay between the proximity-induced superconductivity and the inherent electron correlations of this ultimate diffusive two-dimensional metal. The observed spatial evolution of the tunneling spectra is accounted for theoretically by combining the Usadel equations with the theory of dynamical Coulomb blockade; the relevant length and energy scales are extracted and found in agreement with available experimental dataWe thank Hermann Grabert for useful discussions. This work was supported by grants from the University Pierre et Marie Curie (UPMC) ‘‘Emergence’’ and by CNRS Ph.D. Grant (L. S.-G.). J. C. C. and F. S. B. acknowledge financial support from the Spanish MICINN (Contracts No. FIS2011-28851-C02-01 and No. FIS2011-28851- C02-02

    Coherent and incoherent bands in La and Rh doped Sr3_3 Ir2_2 O7_7

    No full text
    International audienceIn Sr2_2 IrO4_4 and Sr3_3 Ir2_2 O7_7 , correlations, magnetism, and spin-orbit coupling compete on similar energy scales, creating a new context to study metal-insulator transitions (MIT). We use here angle-resolved photoemission to investigate the MIT as a function of hole and electron doping in Sr3_3 Ir2_2 O7_7 , obtained respectively by Ir/Rh and Sr/La substitutions. We show that there is a clear reduction as a function of doping of the gap between a lower and upper band on both sides of the Fermi level, from 0.2 to 0.05 eV. Although these two bands have a counterpart in band structure calculations, they are characterized by a very different degree of coherence. The upper band exhibits clear quasiparticle peaks, while the lower band is very broad and loses weight as a function of doping. Moreover, their ARPES spectral weights obey different periodicities, reinforcing the idea of their different nature. We argue that a very similar situation occurs in Sr2_2 IrO4_4 and conclude that the physics of the two families is essentially the same

    Direct observation of Josephson vortex cores

    No full text
    International audienceSuperconducting correlations may propagate between two superconductors separated by a tiny insulating or metallic barrier, allowing a dissipationless electric current to flow(1,2). In the presence of a magnetic field, the maximum supercurrent oscillates(3) and each oscillation corresponding to the entry of one Josephson vortex into the barrier(4). Josephson vortices are conceptual blocks of advanced quantum devices such as coherent terahertz generators(5) or qubits for quantum computing(6), in which on-demand generation and control is crucial. Here, we map superconducting correlations inside proximity Josephson junctions(7) using scanning tunnelling microscopy. Unexpectedly, we find that such Josephson vortices have real cores, in which the proximity gap is locally suppressed and the normal state recovered. By following the Josephson vortex formation and evolution we demonstrate that they originate from quantum interference of Andreev quasiparticles(8), and that the phase portraits of the two superconducting quantum condensates at edges of the junction decide their generation, shape, spatial extent and arrangement. Our observation opens a pathway towards the generation and control of Josephson vortices by applying supercurrents through the superconducting leads of the junctions, that is, by purely electrical means without any need for a magnetic field, which is a crucial step towards high-density on-chip integration of superconducting quantum devices

    Expansion of a superconducting vortex core into a diffusive metal

    Get PDF
    Vortices in quantum condensates exist owing to a macroscopic phase coherence. Here we show, both experimentally and theoretically, that a quantum vortex with a well-defined core can exist in a rather thick normal metal, proximized with a superconductor. Using scanning tunneling spectroscopy we reveal a proximity vortex lattice at the surface of 50 nm - thick Cu-layer deposited on Nb. We demonstrate that these vortices have regular round cores in the centers of which the proximity minigap vanishes. The cores are found to be significantly larger than the Abrikosov vortex cores in Nb, which is related to the effective coherence length in the proximity region. We develop a theoretical approach that provides a fully self-consistent picture of the evolution of the vortex with the distance from Cu/Nb interface, the interface impedance, applied magnetic field, and temperature. Our work opens a way for the accurate tuning of the superconducting properties of quantum hybrids
    corecore