69,829 research outputs found

    Characterization of volatile organic compounds at a roadside environment in Hong Kong: An investigation of influences after air pollution control strategies

    Get PDF
    Vehicular emission is one of the important anthropogenic pollution sources for volatile organic compounds (VOCs). Four characterization campaigns were conducted at a representative urban roadside environment in Hong Kong between May 2011 and February 2012. Carbon monoxide (CO) and VOCs including methane (CH4), non-methane hydrocarbons (NMHCs), halocarbons, and alkyl nitrates were quantified. Both mixing ratios and compositions of the target VOCs show ignorable seasonal variations. Except CO, liquefied petroleum gas (LPG) tracers of propane, i-butane and n-butane are the three most abundant VOCs, which increased significantly as compared with the data measured at the same location in 2003. Meanwhile, the mixing ratios of diesel- and gasoline tracers such as ethyne, alkenes, aromatics, halogenated, and nitrated hydrocarbons decreased by at least of 37%. The application of advanced multivariate receptor modeling technique of positive matrix factorization (PMF) evidenced that the LPG fuel consumption is the largest pollution source, accounting for 60 ± 5% of the total quantified VOCs at the roadside location. The sum of ozone formation potential (OFP) for the target VOCs was 300.9 μg-O3 m-3, which was 47% lower than the value of 567.3 μg-O3 m-3 measured in 2003. The utilization of LPG as fuel in public transport (i.e., taxis and mini-buses) contributed 51% of the sum of OFP, significantly higher than the contributions from gasoline- (16%) and diesel-fueled (12%) engine emissions. Our results demonstrated the effectiveness of the switch from diesel to LPG-fueled engine for taxis and mini-buses implemented by the Hong Kong Special Administrative Region (HKSAR) Government between the recent ten years, in additional to the execution of substitution to LPG-fueled engine and restrictions of the vehicular emissions in compliance with the updated European emission standards

    Numerical study on scattering and absorption by periodically arranged acoustical treatment at oblique incidence

    Get PDF
    Starting from p. 3207 of this journal issue is proceedings of ACOUSTICS 2012 HONG KONGSession 2aNSb (Contributed Papers) - Noise: Numerical Methods in Noise I: abstract 2aNSb2The propagation of sound over an impedance strip has been a topic of interest in sound abatement design. Excess absorption by the periodical arrangement of two or more distinct impedance conditions has been shown by various theoretical and experimental studies. It is believed that the scattering by the impedance discontinuities can enhance the absorption in some designs. This gives motivation to design a more elaborate set of impedance distribution within one periodic module. In this study, the scattering and absorption by periodically-arranged acoustical treatment at oblique incidence is investigated using the spectral method of Chebyshev collocation. The effects on the sound absorption and reflection by the length of the repeating unit, the angle of incidence and scattering characteristics due to the discontinuities of the acoustical impedance are analyzed. Central to the method is the derivation of out-going waves which allows scattered sound of all directions to leave the computational domain without reflection. The full picture of scattering is captured and analyzed using a rather coarse set of grid suitable for further optimization studies.published_or_final_versio

    Running-Related Injury Incidence: Does It Correlate with Kinematic Sub-groups of Runners? A Scoping Review.

    Get PDF
    BACKGROUND: Historically, kinematic measures have been compared across injured and non-injured groups of runners, failing to take into account variability in kinematic patterns that exist independent of injury, and resulting in false positives. Research led by gait patterns and not pre-defined injury status is called for, to better understand running-related injury (RRI) aetiology and within- and between-group variability. OBJECTIVES: Synthesise evidence for the existence of distinct kinematic sub-groups across a population of injured and healthy runners and assess between-group variability in kinematics, demographics and injury incidence. DATA SOURCES: Electronic database search: PubMed, Web of Science, Cochrane Central Register of Controlled Trials (Wiley), Embase, OVID, Scopus. ELIGIBILITY CRITERIA: Original, peer-reviewed, research articles, published from database start to August 2022 and limited to English language were searched for quantitative and mixed-methods full-text studies that clustered injured runners according to kinematic variables. RESULTS: Five studies (n = 690) were included in the review. All studies detected the presence of distinct kinematic sub-groups of runners through cluster analysis. Sub-groups were defined by multiple differences in hip, knee and foot kinematics. Sex, step rate and running speed also varied significantly between groups. Random injury dispersal across sub-groups suggests no strong evidence for an association between kinematic sub-groups and injury type or location. CONCLUSION: Sub-groups containing homogeneous gait patterns exist across healthy and injured populations of runners. It is likely that a single injury may be represented by multiple movement patterns, and therefore kinematics may not predict injury risk. Research to better understand the underlying causes of kinematic variability, and their associations with RRI, is warranted

    Numerical investigation of the conditioning for plane wave discontinuous Galerkin methods

    Full text link
    We present a numerical study to investigate the conditioning of the plane wave discontinuous Galerkin discretization of the Helmholtz problem. We provide empirical evidence that the spectral condition number of the plane wave basis on a single element depends algebraically on the mesh size and the wave number, and exponentially on the number of plane wave directions; we also test its dependence on the element shape. We show that the conditioning of the global system can be improved by orthogonalization of the local basis functions with the modified Gram-Schmidt algorithm, which results in significantly fewer GMRES iterations for solving the discrete problem iteratively.Comment: Submitted as a conference proceeding; minor revisio

    In silico assessment of mouth-throat effects on regional deposition in the upper tracheobronchial airways

    Get PDF
    Regional deposition of inhaled medicines is a valuable metric of effectiveness in drug delivery applications to the lung. In silico methods are now emerging as a valuable tool for the detailed description of localized deposition in the respiratory airways. In this context, there is a need to minimize the computational cost of high-fidelity numerical approaches. Motivated by this need, the present study is designed to assess the role of the extrathoracic airways in determining regional deposition in the upper bronchial airways. Three mouth-throat geometries, with significantly different geometric and filtering characteristics, are merged onto the same tracheobronchial tree that extends to generation 8, and Large Eddy Simulations are carried out at steady inhalation flowrates of 30 and View the MathML source. At both flowrates, large flow field differences in the extrathoracic airways across the three geometries largely die out below the main bifurcation. Importantly, localized deposition fractions are found to remain practically identical for particles with aerodynamic diameters of up to View the MathML source and View the MathML source at 30 and View the MathML source, respectively. For larger particles, differences in the localized deposition fractions are shown to be mainly due to variations in the mouth-throat filtering rather than upstream flow effects or differences in the local flow field. Deposition efficiencies in the individual airway segments exhibit strong correlations across the three geometries, for all particle sizes. The results suggest that accurate predictions of regional deposition in the tracheobronchial airways can therefore be obtained if the particle size distribution that escapes filtering in the mouth-throat (ex-cast dose) of a particular patient is known or can be estimated. These findings open the prospect for significant reductions in the computational expense, especially in the context of in silico population studies, where the aerosol size distribution and precomputed flow field from standardized mouth-throat models could be used with large numbers of tracheobronchial trees available in chest-CT databases

    Histopathologic parameters as predictors of response to endoscopic sinus surgery in nonallergic patients with chronic rhinosinusitis

    Get PDF
    OBJECTIVE: To estimate the predictable value of histopathologic parameters in chronic rhinosinusitis (CRS) for response to endoscopic sinus surgery (ESS). - - - - - STUDY DESIGN: Symptomatology was rated in 100 patients prior to as well as 12 and 24 months after surgery. Specimens taken during the procedure were examined and scored for goblet cells, subepithelial thickening, mast cells, and eosinophils. Multiple regression analysis was performed to predict the total score of subjective symptoms before treatment by histopathologic parameters. The correlation between histopathologic parameters and postoperative symptoms was then evaluated. - - - - - RESULTS: Goblet cells were the best predictor correlating with 5 symptoms. Subepithelial thickening correlated with 4 symptoms. Mast cell infiltration correlated with 3 symptoms. Eosinophilic infiltration correlated with only one symptom (P<0.05). - - - - - CONCLUSION: Certain histopathologic parameters in CRS are predictive of favorable response to ESS. - - - - - SIGNIFICANCE: Pathologic evaluation may help the ENT surgeon to predict the persistence of certain CRS symptoms after ESS, even in patients at low risk for surgical failure. - - - - - EBM rating: C-4

    Numerical studies of the Lagrangian approach for reconstruction of the conductivity in a waveguide

    Full text link
    We consider an inverse problem of reconstructing the conductivity function in a hyperbolic equation using single space-time domain noisy observations of the solution on the backscattering boundary of the computational domain. We formulate our inverse problem as an optimization problem and use Lagrangian approach to minimize the corresponding Tikhonov functional. We present a theorem of a local strong convexity of our functional and derive error estimates between computed and regularized as well as exact solutions of this functional, correspondingly. In numerical simulations we apply domain decomposition finite element-finite difference method for minimization of the Lagrangian. Our computational study shows efficiency of the proposed method in the reconstruction of the conductivity function in three dimensions
    corecore