146 research outputs found
Comment on "Estimate of the vibrational frequencies of spherical virus particles"
This comment corrects some errors which appeared in the calculation of an
elastic sphere eigenenergies. As a result, the symmetry of the mode having the
lowest frequency is changed. Also a direction for calculating the damping of
these modes for embedded elastic spheres is given.Comment: comment L. H. Ford Phys. Rev. E 67 (2003) 05192
Very fast relaxation in polycarbonate glass
Low-frequency Raman and inelastic neutron scattering of amorphous bis-phenol
A polycarbonate is measured at low temperature, and compared. The vibrational
density of states and light-vibration coupling coefficient are determined. The
frequency dependences of these parameters are explained by propagating
vibration modes up to an energy of about 1 meV, and fracton-like modes in more
cohesive domains at higher energies. The vibrational dynamics is in agreement
with a disorder in the glass, which is principally of bonding or of elasticity
instead of density.Comment: 15 pages, 6 figures, to be pub. in EPJ
High order vibration modes of glass embedded AgAu nanoparticles
High resolution low frequency Raman scattering measurements from embedded
AgAu nanoparticles unveil efficient scattering by harmonics of both the
quadrupolar and the spherical modes. Comparing the experimental data with
theoretical calculations that account for both the embedding medium and the
resonant Raman process enables a very complete description of the observed
multiple components in terms of harmonics of both the quadrupolar and spherical
modes, with a dominating Raman response from the former ones. It is found that
only selected harmonics of the quadrupolar mode contribute significantly to the
Raman spectra in agreement with earlier theoretical predictions.Comment: 11 pages, 4 figure
Low-energy vibrational density of states of plasticized poly(methyl methacrylate)
The low-energy vibrational density of states (VDOS)of hydrogenated or
deuterated poly(methyl methacrylate)(PMMA)plasticized by dibutyl phtalate (DBP)
is determined by inelastic neutron scattering.From experiment, it is equal to
the sum of the ones of the PMMA and DBP components.However, a partition of the
total low-energy VDOS among PMMA and DBP was observed.Contrary to Raman
scattering, neutron scattering does not show enhancement of the boson peak due
to plasticization.Comment: 9 pages, 2 figures (Workshop on Disordered Systems, Andalo
Inelastic light, neutron, and X-ray scatterings related to the heterogeneous elasticity of glasses
The effects of plasticization of poly(methyl methacrylate) glass on the boson
peaks observed by Raman and neutron scattering are compared. In plasticized
glass the cohesion heterogeneities are responsible for the neutron boson peak
and partially for the Raman one, which is enhanced by the composition
heterogeneities. Because the composition heterogeneities have a size similar to
that of the cohesion ones and form quasiperiodic clusters, as observed by small
angle X-ray scattering, it is inferred that the cohesion heterogeneities in a
normal glass form nearly periodic arrangements too. Such structure at the
nanometric scale explains the linear dispersion of the vibrational frequency
versus the transfer momentum observed by inelastic X-ray scattering.Comment: 9 pages, 2 figures, to be published in J. Non-Cryst. Solids
(Proceedings of the 4th IDMRCS
Continuum elastic sphere vibrations as a model for low-lying optical modes in icosahedral quasicrystals
The nearly dispersionless, so-called "optical" vibrational modes observed by
inelastic neutron scattering from icosahedral Al-Pd-Mn and Zn-Mg-Y
quasicrystals are found to correspond well to modes of a continuum elastic
sphere that has the same diameter as the corresponding icosahedral basic units
of the quasicrystal. When the sphere is considered as free, most of the
experimentally found modes can be accounted for, in both systems. Taking into
account the mechanical connection between the clusters and the remainder of the
quasicrystal allows a complete assignment of all optical modes in the case of
Al-Pd-Mn. This approach provides support to the relevance of clusters in the
vibrational properties of quasicrystals.Comment: 9 pages without figure
Effect of physical aging on the low-frequency vibrational density of states of a glassy polymer
The effects of the physical aging on the vibrational density of states (VDOS)
of a polymeric glass is studied. The VDOS of a poly(methyl methacrylate) glass
at low-energy (<15 meV), was determined from inelastic neutron scattering at
low-temperature for two different physical thermodynamical states. One sample
was annealed during a long time at temperature lower than Tg, and another was
quenched from a temperature higher than Tg. It was found that the VDOS around
the boson peak, relatively to the one at higher energy, decreases with the
annealing at lower temperature than Tg, i.e., with the physical aging.Comment: To be published in Europhys. Let
Off equilibrium fluctuations in a polymer glass
The fluctuation-dissipation relation (FDR) is measured on the dielectric
properties a polymer glass (polycarbonate). It is observed that the fluctuation
dissipation theorem is strongly violated for a quench from above to below the
glass transition temperature. The amplitude and the persistence time of this
violation are decreasing functions of frequency. Around it may persist
for several hours. The origin of this violation is a highly intermittent
dynamics characterized by large fluctuations a strongly non-Gaussian
statistics. The intermittent dynamics depends on the quenching rate and it
disappears after slow quenches. The relevance of these results for recent
models of aging are discussed.Comment: submitted to Physica
Resonant Raman Scattering by quadrupolar vibrations of Ni-Ag Core-shell Nanoparticles
Low-frequency Raman scattering experiments have been performed on thin films
consisting of nickel-silver composite nanoparticles embedded in alumina matrix.
It is observed that the Raman scattering by the quadrupolar modes, strongly
enhanced when the light excitation is resonant with the surface dipolar
excitation, is mainly governed by the silver electron contribution to the
plasmon excitation. The Raman results are in agreement with a core-shell
structure of the nanoparticles, the silver shell being loosely bonded to the
nickel core.Comment: 3 figures. To be published in Phys. Rev.
Continuum limit of amorphous elastic bodies: A finite-size study of low frequency harmonic vibrations
The approach of the elastic continuum limit in small amorphous bodies formed
by weakly polydisperse Lennard-Jones beads is investigated in a systematic
finite-size study. We show that classical continuum elasticity breaks down when
the wavelength of the sollicitation is smaller than a characteristic length of
approximately 30 molecular sizes. Due to this surprisingly large effect
ensembles containing up to N=40,000 particles have been required in two
dimensions to yield a convincing match with the classical continuum predictions
for the eigenfrequency spectrum of disk-shaped aggregates and periodic bulk
systems. The existence of an effective length scale \xi is confirmed by the
analysis of the (non-gaussian) noisy part of the low frequency vibrational
eigenmodes. Moreover, we relate it to the {\em non-affine} part of the
displacement fields under imposed elongation and shear. Similar correlations
(vortices) are indeed observed on distances up to \xi~30 particle sizes.Comment: 28 pages, 13 figures, 3 table
- …
