24,915 research outputs found

    Design of conditions for emergence of self-replicators

    Full text link
    A self-replicator is usually understood to be an object of definite form that promotes the conversion of materials in its environment into a nearly identical copy of itself. The challenge of engineering novel, micro- or nano-scale self-replicators has attracted keen interest in recent years, both because exponential amplification is an attractive method for generating high yields of specific products, and also because self-reproducing entities have the potential to be optimized or adapted through rounds of iterative selection. Substantial steps forward have been achieved both in the engineering of particular self-replicating molecules, and also in characterizing the physical basis for possible mechanisms of self-replication. At present, however, there is need for a theoretical treatment of what physical conditions are most conducive to the emergence of novel self-replicating structures from a reservoir of building blocks on a desired time-scale. Here we report progress in addressing this need. By analyzing the dynamics of a generic class of heterogeneous particle mixtures whose reaction rates emerge from basic physical interactions, we demonstrate that the spontaneous discovery of self-replication is controlled by relatively generic features of the chemical space, namely: the dispersion in the distribution of reaction timescales and bound-state energies. Based on this analysis, we provide quantitative criteria that may aid experimentalists in designing a system capable of producing self-replicators, and in estimating the likely timescale for exponential growth to start.Comment: Supplementary Information is under the Ancillary Files ---

    Application of a Reynolds stress turbulence model to the compressible shear layer

    Get PDF
    Theoretically based turbulence models have had success in predicting many features of incompressible, free shear layers. However, attempts to extend these models to the high-speed, compressible shear layer have been less effective. In the present work, the compressible shear layer was studied with a second-order turbulence closure, which initially used only variable density extensions of incompressible models for the Reynolds stress transport equation and the dissipation rate transport equation. The quasi-incompressible closure was unsuccessful; the predicted effect of the convective Mach number on the shear layer growth rate was significantly smaller than that observed in experiments. Having thus confirmed that compressibility effects have to be explicitly considered, a new model for the compressible dissipation was introduced into the closure. This model is based on a low Mach number, asymptotic analysis of the Navier-Stokes equations, and on direct numerical simulation of compressible, isotropic turbulence. The use of the new model for the compressible dissipation led to good agreement of the computed growth rates with the experimental data. Both the computations and the experiments indicate a dramatic reduction in the growth rate when the convective Mach number is increased. Experimental data on the normalized maximum turbulence intensities and shear stress also show a reduction with increasing Mach number

    Cosmology of the Next-to-Minimal Supersymmetric Standard Model

    Get PDF
    We discuss the domain wall problem in the Next-to-Minimal Supersymmetric Standard Model, with particular attention to the usual solution of explicit breaking of the discrete symmetry by non-renormalisable operators. This ``solution'' leads to a contradiction between the requirements of cosmology and those of avoiding the destabilisation of the hierarchy.Comment: 6 pages LaTeX, needs sprocl.sty (included at end) Talk presented by P.L. White at Valencia 9

    Primordial Non-Gaussianity in the Forest: 3D Bispectrum of Ly-alpha Flux Spectra Along Multiple Lines of Sight

    Full text link
    We investigate the possibility of constraining primordial non-Gaussianity using the 3D bispectrum of Ly-alpha forest. The strength of the quadratic non-Gaussian correction to an otherwise Gaussian primordial gravitational field is assumed to be dictated by a single parameter fnl. We present the first prediction for bounds on fnl using Ly-alpha flux spectra along multiple lines of sight. The 3D Ly-α\alpha transmitted flux field is modeled as a biased tracer of the underlying matter distribution sampled along 1D skewers corresponding to quasars sight lines. The precision to which fnl can be constrained depends on the survey volume, pixel noise and aliasing noise (arising from discrete sampling of the density field). We consider various combinations of these factors to predict bounds on fnl. We find that in an idealized situation of full sky survey and negligible Poisson noise one may constrain fnl ~ 23 in the equilateral limit. Assuming a Ly-alpha survey covering large parts of the sky (k_{min} = 8 * 10^{-4} Mpc^{-1}) and with a quasar density of \bar n = 5 * 10^{-3} Mpc^{-2} it is possible to constrain fnl ~ 100 for equilateral configurations. The possibility of measuring fnl at a precision comparable to LSS studies maybe useful for joint constraining of inflationary scenarios using different data sets.Comment: 4 pages, 1 figure, 1 table. Accepted for publication in Physical Review Letter

    On the Thermodynamic Geometry of Hot QCD

    Full text link
    We study the nature of the covariant thermodynamic geometry arising from the free energy of hot QCD. We systematically analyze the underlying equilibrium thermodynamic configurations of the free energy of 2- and 3-flavor hot QCD with or without including thermal fluctuations in the neighborhood of the QCD transition temperature. We show that there exists a well-defined thermodynamic geometric notion for QCD thermodynamics. The geometry thus obtained has no singularity as an intrinsic Riemannian manifold. We further show that there is a close connection of this geometric approach with the existing studies of correlations and quark number susceptibilities in hot QCD.Comment: 15 pages, 12 figures, Keywords: Thermodynamic Geometry, Hot QCD, Quasi-particles, PACS: 12.38.-t; 05.70.Fh; 02.40.Ky; 12.40.E

    Electrical transport properties of nanostructured ferromagnetic perovskite oxides La_0.67Ca_0.33MnO_3 and La_0.5Sr_0.5CoO_3 at low temperatures (5 K > T >0.3 K) and high magnetic field

    Full text link
    We report a comprehensive study of the electrical and magneto-transport properties of nanocrystals of La_0.67Ca_0.33MnO_3 (LCMO) (with size down to 15 nm) and La_0.5Sr_0.5CoO_3 (LSCO) (with size down to 35 nm) in the temperature range 0.3 K to 5 K and magnetic fields upto 14 T. The transport, magnetotransport and non-linear conduction (I-V curves) were analysed using the concept of Spin Polarized Tunnelling in the presence of Coulomb blockade. The activation energy of transport, \Delta, was used to estimate the tunnelling distances and the inverse decay length of the tunnelling wave function (\chi) and the height of the tunnelling barrier (\Phi_B). The magnetotransport data were used to find out the magnetic field dependences of these tunnelling parameters. The data taken over a large magnetic field range allowed us to separate out the MR contributions at low temperatures arising from tunnelling into two distinct contributions. In LCMO, at low magnetic field, the transport and the MR are dominated by the spin polarization, while at higher magnetic field the MR arises from the lowering of the tunnel barrier by the magnetic field leading to an MR that does not saturate even at 14 T. In contrast, in LSCO, which does not have substantial spin polarization, the first contribution at low field is absent, while the second contribution related to the barrier height persists. The idea of inter-grain tunnelling has been validated by direct measurements of the non-linear I-V data in this temperature range and the I-V data was found to be strongly dependent on magnetic field. We made the important observation that a gap like feature (with magnitude ~ E_C, the Coulomb charging energy) shows up in the conductance g(V) at low bias for the systems with smallest nanocrystal size at lowest temperatures (T < 0.7 K). The gap closes as the magnetic field and the temperature are increased.Comment: 13 figure
    corecore