137 research outputs found

    Improved Thermal Emitters for Thermophotovoltaic Energy Conversion

    Get PDF
    Thermophotovoltaic (TPV) energy conversion enables millimeter scale power generation required for portable microelectronics, robotics, etc. In a TPV system, a heat source heats a selective emitter to incandescence, the radiation from which is incident on a low bandgap TPV cell. The selective emitter tailors the photonic density of states to produce spectrally confined selective emission of light matching the bandgap of the photovoltaic cell, enabling high heat-to-electricity conversion efficiency. The selective emitter requires: thermal stability at high-temperatures for long operational lifetimes, simple and relatively low-cost fabrication, as well as spectrally selective emission over a large uniform area. Generally, the selective emission can either originate from the natural material properties, such as in ytterbia or erbia emitters, or can be engineered through microstructuring. Our approach, the 2D photonic crystal fabricated in refractory metals, offers high spectral selectivity and high-temperature stability while being fabricated by standard semiconductor processes. In this work, we present a brief comparison of TPV system efficiencies using these different emitter technologies. We then focus on the design, fabrication, and characterization of our current 2D photonic crystal, which is a square lattice of cylindrical holes fabricated in a refractory metal substrate. The spectral performance and thermal stability of the fabricated photonic crystal thermal emitters are demonstrated and the efficiency gain of our model TPV system is characterized

    Surface Localization of Buried III–V Semiconductor Nanostructures

    Get PDF
    In this work, we study the top surface localization of InAs quantum dots once capped by a GaAs layer grown by molecular beam epitaxy. At the used growth conditions, the underneath nanostructures are revealed at the top surface as mounding features that match their density with independence of the cap layer thickness explored (from 25 to 100 nm). The correspondence between these mounds and the buried nanostructures is confirmed by posterior selective strain-driven formation of new nanostructures on top of them, when the distance between the buried and the superficial nanostructures is short enough (d = 25 nm)

    Evaluation of Aerosol Delivery of Nanosuspension for Pre-clinical Pulmonary Drug Delivery

    Get PDF
    Asthma and chronic obstructive pulmonary disease (COPD) are pulmonary diseases that are characterized by inflammatory cell infiltration, cytokine production, and airway hyper-reactivity. Most of the effector cells responsible for these pathologies reside in the lungs. One of the most direct ways to deliver drugs to the target cells is via the trachea. In a pre-clinical setting, this can be achieved via intratracheal (IT), intranasal (IN), or aerosol delivery in the desired animal model. In this study, we pioneered the aerosol delivery of a nanosuspension formulation in a rodent model. The efficiency of different dosing techniques and formulations to target the lungs were compared, and fluticasone was used as the model compound. For the aerosol particle size determination, a ten-stage cascade impactor was used. The mass median aerodynamic diameter (MMAD) was calculated based on the percent cumulative accumulation at each stage. Formulations with different particle size of fluticasone were made for evaluation. The compatibility of regular fluticasone suspension and nanosuspension for aerosol delivery was also investigated. The in vivo studies were conducted on mice with optimized setting. It was found that the aerosol delivery of fluticasone with nanosuspension was as efficient as intranasal (IN) dosing, and was able to achieve dose dependent lung deposition

    Influence of GaAs Substrate Orientation on InAs Quantum Dots: Surface Morphology, Critical Thickness, and Optical Properties

    Get PDF
    InAs/GaAs heterostructures have been simultaneously grown by molecular beam epitaxy on GaAs (100), GaAs (100) with a 2° misorientation angle towards [01−1], and GaAs (n11)B (n = 9, 7, 5) substrates. While the substrate misorientation angle increased from 0° to 15.8°, a clear evolution from quantum dots to quantum well was evident by the surface morphology, the photoluminescence, and the time-resolved photoluminescence, respectively. This evolution revealed an increased critical thickness and a delayed formation of InAs quantum dots as the surface orientation departed from GaAs (100), which was explained by the thermal-equilibrium model due to the less efficient of strain relaxation on misoriented substrate surfaces

    Mono-dispersed Functional Polymeric Nanocapsules with Multi-lacuna via Soapless Microemulsion Polymerization with Spindle-like α-Fe2O3Nanoparticles as Templates

    Get PDF
    The mono-dispersed crosslinked polymeric multi-lacuna nanocapsules (CP(St–OA) nanocapsules) about 40 nm with carboxylic groups on their inner and outer surfaces were fabricated in the present work. The small conglomerations of the oleic acid modified spindle-like α-Fe2O3nanoparticles (OA–Fe2O3) were encapsulated in the facile microemulsion polymerization with styrene (St) as monomer and divinyl benzene (DVB) as crosslinker. Then the templates, small conglomerations of OA–Fe2O3, were etched with HCl in tetrahydrofuran (THF). The surface carboxylic groups of the crosslinked polymeric multi-lacuna nanocapsules were validated by the Zeta potential analysis

    Template Route to Chemically Engineering Cavities at Nanoscale: A Case Study of Zn(OH)2 Template

    Get PDF
    A size-controlled Zn(OH)2 template is used as a case study to explain the chemical strategy that can be executed to chemically engineering various nanoscale cavities. Zn(OH)2 octahedron with 8 vertices and 14 edges is fabricated via a low temperature solution route. The size can be tuned from 1 to 30 μm by changing the reaction conditions. Two methods can be selected for the hollow process without loss of the original shape of Zn(OH)2 template. Ion-replacement reaction is suitable for fabrication of hollow sulfides based on the solubility difference between Zn(OH)2 and products. Controlled chemical deposition is utilized to coat an oxide layer on the surface of Zn(OH)2 template. The abundant hydroxyl groups on Zn(OH)2 afford strong coordination ability with cations and help to the coating of a shell layer. The rudimental Zn(OH)2 core is eliminated with ammonia solution. In addition, ZnO-based heterostructures possessing better chemical or physical properties can also be prepared via this unique templating process. Room-temperature photoluminescence spectra of the heterostructures and hollow structures are also shown to study their optical properties

    Genetic variability in the precore and core promoter regions of hepatitis B virus strains in Karachi

    Get PDF
    BACKGROUND: Hepatitis B virus (HBV) genotypes have distinct geographic distribution. Moreover, much genetic variability has been described in the precore (PC) and basal core promoter (BCP) regions of the HBV genome. The local prevalence of HBV genotypes and mutations has not been well studied. The aim of the present study is to determine the prevalence of HBV genotypes and mutations in the PC and BCP region in HBV strains in Karachi. METHODS: A total of 109 chronic hepatitis B patients with detectable HBV DNA by a PCR assay were enrolled in the study. Sera were tested for HBeAg, anti-HBe antibody and liver profile. HBV genotypes and mutations in the PC and BCP regions were detected by INNO-LiPA line-probe assays. RESULTS: Of the 109 patients investigated, 38 (35%) were HBeAg positive while 71 (65%) were HBeAg negative. Genotype D was present in 100% of the patients. Two patients had co-infection with genotype A. There was no significant difference in the baseline characteristics, mean ALT levels, and presence of clinical cirrhosis in patients with HBeAg positive or negative strains with or without PC and BCP mutations. Of the 38 HBeAg positive patients, 9 (24%) had PC and BCP mutations. In the HBeAg negative patient group, mutations were detected in 44 (62%) of the strains investigated. More than one mutation was common, seen in 26 (37%) patients with HBeAg negative disease and 6 (16%) patients with HBeAg positive disease. Twelve (17%) HBeAg negative patients had dual T1762 and A1764 mutations. None of the HBeAg positive patients had T1762 mutation. Mutations were undetectable in 27 (38%) of patients with HBeAg negative disease. CONCLUSION: Our study shows that type D is the main HBV genotype in Karachi, Pakistan. Significant numbers of patients infected with this genotype have PC and BCP variants. Mutations at more than one site are common. Patients harboring these mutants do not differ significantly in their clinical presentation from patients having wild type infection
    corecore