534 research outputs found

    Experimental Quantum Imaging exploiting multi-mode spatial correlation of twin beams

    Full text link
    Properties of quantum states have disclosed new and revolutionary technologies, ranging from quantum information to quantum imaging. This last field is addressed to overcome limits of classical imaging by exploiting specific properties of quantum states of light. One of the most interesting proposed scheme exploits spatial quantum correlations between twin beams for realizing sub-shot-noise imaging of the weak absorbing objects, leading ideally to a noise-free imaging. Here we discuss in detail the experimental realization of this scheme, showing its capability to reach a larger signal to noise ratio with respect to classical imaging methods and, therefore, its interest for future practical applications

    Systematic analysis of SNR in bipartite Ghost Imaging with classical and quantum light

    Full text link
    We present a complete and exhaustive theory of signal-to-noise-ratio in bipartite ghost imaging with classical (thermal) and quantum (twin beams) light. The theory is compared with experiment for both twin beams and thermal light in a certain regime of interest

    Reply to Comment on "Quantum dense key distribution"

    Full text link
    In this Reply we propose a modified security proof of the Quantum Dense Key Distribution protocol detecting also the eavesdropping attack proposed by Wojcik in his Comment.Comment: To appear on PRA with minor change

    Recent experiments performed at "Carlo Novero" lab at INRIM on Quantum Information and Foundations of Quantum Mechanics

    Full text link
    In this paper we present some recent work performed at "Carlo Novero" lab on Quantum Information and Foundations of Quantum Mechanics.Comment: Contribution to III international workshop "Recent advances in Foundations of Quantum Mechanics and Quantum Information. In memory of Carlo Novero

    Absolute calibration of Analog Detectors using Stimulated Parametric Down Conversion

    Full text link
    Spontaneous parametric down conversion has been largely exploited as a tool for absolute calibration of photon counting detectors, photomultiplier tubes or avalanche photodiodes working in Geiger regime. In this work we investigate the extension of this technique from very low photon flux of photon counting regime to the absolute calibration of analog photodetectors at higher photon flux. Moving toward higher photon rate, i.e. at high gain regime, with the spontaneous parametric down conversion shows intrinsic limitations of the method, while the stimulated parametric down conversion process, where a seed beam properly injected into the crystal in order to increase the photon generation rate in the conjugate arm, allows us to work around this problem. A preliminary uncertainty budget is discussed

    Studies of the genetic diversity of seven sweetsop (Annona squamosa L.) cultivars by amplified fragment length polymorphism analysis

    Get PDF
    Seven sweetsop germplasm resources were studied, and amplified fragment length polymorphism (AFLP) analysis system was established by detecting the results of several reactions, such as DNA extraction, enzyme restriction, ligation, preamplification and selective amplification in the reaction system of AFLP. The seven germplasm resources of sweetsop were studied by using AFLP technique, and UPGMA clustering results showed genetic distance of 0.572 ~ 0.818. Small genetic distance was 0.572 between ‘Yuanhua’ sweetsop and other sweetsop cultivars; high genetic distance was 0.818 between ‘AP’ and ‘Fenglishijia’ sweetsop. These results suggested that there was relative family relationship between them. This aims to study the family relationship in seven sweetsop germplasms resources, in order to select parents in sweetsop breeding and grafted rootstock.Key words: Sweetsop, DNA extraction, amplified fragment length polymorphism (AFLP), genetic diversity

    Ta/CoFeB/MgO analysis for low power nanomagnetic devices

    Get PDF
    The requirement of high memory bandwidth for next-generation computing systems moved the attention to the development of devices that can combine storage and logic capabilities. Domain wall-based spintronic devices intrinsically combine both these requirements making them suitable both for non-volatile storage and computation. CoPt and CoNi were the technology drivers of perpendicular Nano Magnetic Logic devices (pNML), but for power constraints and depinning fields, novel CoFeBMgO layers appear more promis- ing. In this paper, we investigate the Ta2CoFeB1MgO2Ta3 stack at the simulation and experimental level, to show its potential for the next generation of magnetic logic devices. The micromagnetic simulations are used to support the experiments. We focus, first, at the experimental level measuring the switching field distribution of patterned magnetic islands, Ms via VSM and the domain wall speed on magnetic nanowires. Then, at the simulation level, we focus on the magnetostatic analysis of magnetic islands quantifying the stray field that can be achieved with different layout topologies. Our results show that the achieved coupling is strong enough to realize logic computation with magnetic islands, moving a step forward in the direction of low power perpendicularly magnetized logic devices

    Quantum and classical characterization of single/few photon detectors

    Full text link
    This paper's purpose is to review the results recently obtained in the Quantum Optics labs of the National Institute of Metrological Research (INRIM) in the field of single- and few-photon detectors calibration, from both the classical and quantum viewpoint. In the first part of the paper is presented the calibration of a single-photon detector with absolute methods, while in the second part we focus on photon-number-resolving detectors, discussing both the classical and quantum characterization of such devices.Comment: Quantum Matter in pres
    • 

    corecore