86 research outputs found

    Direct measurement of diurnal polar motion by ring laser gyroscopes

    Get PDF
    We report the first direct measurements of the very small effect of forced diurnal polar motion, successfully observed on three of our large ring lasers, which now measure the instantaneous direction of Earth's rotation axis to a precision of 1 part in 10^8 when averaged over a time interval of several hours. Ring laser gyroscopes provide a new viable technique for directly and continuously measuring the position of the instantaneous rotation axis of the Earth and the amplitudes of the Oppolzer modes. In contrast, the space geodetic techniques (VLBI, SLR, GPS, etc.) contain no information about the position of the instantaneous axis of rotation of the Earth, but are sensitive to the complete transformation matrix between the Earth-fixed and inertial reference frame. Further improvements of gyroscopes will provide a powerful new tool for studying the Earth's interior.Comment: 5 pages, 4 figures, agu2001.cl

    First results from the GPS atmosphere sounding experiment TOR aboard the TerraSAR-X satellite

    Get PDF
    GPS radio occultation events observed between 24 July and 17 November 2008 by the IGOR occultation receiver aboard the TerraSAR-X satellite are processed and analyzed. The comparison of 15 327 refractivity profiles with collocated ECMWF data yield a mean bias between zero and −0.30 % at altitudes between 5 and 30 km. Standard deviations decrease from about 1.4 % at 5 km to about 0.6 % at 10 km altitude, however, increase significantly in the upper stratosphere. At low latitudes mean biases and standard deviations are larger, in particular in the lower troposphere. The results are consistent with 15 159 refractivity observations collected during the same time period by the BlackJack receiver aboard GRACE-A and processed by GFZ's operational processing system. The main difference between the two occultation instruments is the implementation of open-loop signal tracking in the IGOR (TerraSAR-X) receiver which improves the tropospheric penetration depth in terms of ray height by about 2 km compared to the conventional closed-loop data acquired by BlackJack (GRACE-A)

    The empirical Earth rotation model from VLBI observations

    Get PDF
    AIMS: An alternative to the traditional method for modeling kinematics of the Earth's rotation is proposed. The purpose of developing the new approach is to provide a self-consistent and simple description of the Earth's rotation in a way that can be estimated directly from observations without using intermediate quantities. METHODS: Instead of estimating the time series of pole coordinates, the UT1--TAI angles, their rates, and the daily offsets of nutation, it is proposed to estimate coefficients of the expansion of a small perturbational rotation vector into basis functions. The resulting transformation from the terrestrial coordinate system to the celestial coordinate system is formulated as a product of an a priori matrix of a finite rotation and an empirical vector of a residual perturbational rotation. In the framework of this approach, the specific choice of the a priori matrix is irrelevant, provided the angles of the residual rotation are small enough to neglect their squares. The coefficients of the expansion into the B-spline and Fourier bases, together with estimates of other nuisance parameters, are evaluated directly from observations of time delay or time range in a single least square solution. RESULTS: This approach was successfully implemented in a computer program for processing VLBI observations. The dataset from 1984 through 2006 was analyzed. The new procedure adequately represents the Earth's rotation, including slowly varying changes in UT1--TAI and polar motion, the forced nutations, the free core nutation, and the high frequency variations of polar motion and UT1.Comment: 15 pages, 10 figures, Published in Astronomy and Astrophysics. For numerical tables see http://vlbi.gsfc.nasa.gov/er

    The CAMALIOT project

    Get PDF
    This invited presentation was given at an information event about the European Space Agency’s (ESA) Navigation Innovation and Support Programme (NAVISP) hosted by the Austrian Agency for the Promotion of Science (FFG) in preparation for the ESA Ministerial Conference 2022. The presentation was about the CAMALIOT project, which is currently funded through NAVISP and by FFG, outlining the initial results and what the next steps in the project are. In particular, information about the CAMALIOT crowdsourcing campaign (being run by IIASA) was provided as well as the status of the CAMALIOT machine learning infrastructure and the science uses cases in the project

    A Cloud-native Approach for Processing of Crowdsourced GNSS Observations and Machine Learning at Scale: A Case Study from the CAMALIOT Project

    Get PDF
    The era of modern smartphones, running on Android version 7.0 and higher, facilitates nowadays acquisition of raw dual-frequency multi-constellation GNSS observations. This paves the way for GNSS community data to be potentially exploited for precise positioning, GNSS reflectometry or geoscience applications at large. The continuously expanding global GNSS infrastructure along with the enormous volume of prospective GNSS community data bring, however, major challenges related to data acquisition, its storage, and subsequent processing for deriving various parameters of interest. In addition, such large datasets cannot be managed manually anymore, leading thus to the need for fully automated and sophisticated data processing pipelines. Application of Machine Learning Technology for GNSS IoT data fusion (CAMALIOT) was an ESA NAVISP Element 1 project (NAVISP-EL1-038.2) with activities aiming to address the aforementioned points related to GNSS community data and their exploitation for scientific applications with the use of Machine Learning (ML). This contribution provides an overview of the CAMALIOT project with information on the designed and implemented cloud-native software for GNSS processing and ML at scale, developed Android application for retrieving GNSS observations from the modern generation of smartphones through dedicated crowdsourcing campaigns, related data ingestion and processing, and GNSS analysis concerning both conventional and smartphone GNSS observations. With the use of the developed GNSS engine employing an Extended Kalman Filter, example processing results related to the Zenith Total Delay (ZTD) and Slant Total Electron Content (STEC) are provided based on the analysis of observations collected with geodetic-grade GNSS receivers and from local measurement sessions involving Xiaomi Mi 8 that collected GNSS observations using the developed Android application. For smartphone observations, ZTD is derived in a differential manner based on a single-frequency double-difference approach employing GPS and Galileo observations, whereas satellite-specific STEC time series are obtained through carrier-to-code leveling based on the geometry-free linear combination of observations from both GPS and Galileo constellations. Although the ZTD and STEC time series from smartphones were derived on a demonstration basis, a rather good level of consistency of such estimates with respect to the reference time series was found. For the considered periods, the RMS of differences between the derived smartphone-based time series of differential zenith wet delay and reference values were below 3.1 mm. In terms of satellite-specific STEC time series expressed with respect to the reference STEC time series, RMS of the offset-reduced differences below 1.2 TECU was found. Smartphone-based observations require special attention including additional processing steps and a dedicated parameterization in order to be able to acquire reliable atmospheric estimates. Although with lower measurement quality compared to traditional sources of GNSS data, an augmentation of ground-based networks of fixed high-end GNSS receivers with GNSS-capable smartphones would however, form an interesting source of complementary information for various studies relying on GNSS observations

    Geosciences Roadmap for Research Infrastructures 2025–2028 by the Swiss Geosciences Community

    Get PDF
    This community roadmap presents an integrative approach including the most urgent infrastructure requests for the future development of geosciences in Switzerland. It recommends to strengthen the multidisciplinary nature of the geosciences by putting all activities under the roof of the Integrated Swiss Geosciences supported by four specific research infrastructure pillars. The roadmap represents the view of the Swiss scientific community in the field of geosciences and is a formal element of the process to elaborate the Swiss Roadmap for Research Infrastructures 2023. This bottom-up contribution to the identification and selection of important national and international research infrastructures has been coordinated by the Swiss Academy of Sciences (SCNAT) on a mandate by the State Secretariat for Education, Research and Innovation (SERI).ISSN:2297-1564ISSN:2297-157
    • 

    corecore