151 research outputs found
Increased tumor necrosis factor alpha-converting enzyme activity induces insulin resistance and hepatosteatosis in mice
Tumor necrosis factor alpha-converting enzyme (TACE, also known as ADAM17) was recently involved in the pathogenesis of insulin resistance. We observed that TACE activity was significantly higher in livers of mice fed a high-fat diet (HFD) for 1 month, and this activity was increased in liver > white adipose tissue > muscle after 5 months compared with chow control. In mouse hepatocytes, C(2)C(12) myocytes, and 3T3F442A adipocytes, TACE activity was triggered by palmitic acid, lipolysaccharide, high glucose, and high insulin. TACE overexpression significantly impaired insulin-dependent phosphorylation of AKT, GSK3, and FoxO1 in mouse hepatocytes. To test the role of TACE activation in vivo, we used tissue inhibitor of metalloproteinase 3 (Timp3) null mice, because Timp3 is the specific inhibitor of TACE and Timp3(-/-) mice have higher TACE activity compared with wild-type (WT) mice. Timp3(-/-) mice fed a HFD for 5 months are glucose-intolerant and insulin-resistant; they showed macrovesicular steatosis and ballooning degeneration compared with WT mice, which presented only microvesicular steatosis. Shotgun proteomics analysis revealed that Timp3(-/-) liver showed a significant differential expression of 38 proteins, including lower levels of adenosine kinase, methionine adenosysltransferase I/III, and glycine N-methyltransferase and higher levels of liver fatty acid-binding protein 1. These changes in protein levels were also observed in hepatocytes infected with adenovirus encoding TACE. All these proteins play a role in fatty acid uptake, triglyceride synthesis, and methionine metabolism, providing a molecular explanation for the increased hepatosteatosis observed in Timp3(-/-) compared with WT mice. Conclusion: We have identified novel mechanisms, governed by the TACE-Timp3 interaction, involved in the determination of insulin resistance and liver steatosis during overfeeding in mice
Antimicrobial and antibiofilm activities of new synthesized Silver Ultra-NanoClusters (SUNCs) against Helicobacter pylori
Helicobacter pylori colonizes approximately 50% of the world\u2019s population and it is the cause of chronic gastritis, peptic ulcer disease and gastric cancer. The increase of antibiotic resistance is one of the biggest challenges of our century due to its constant increase. In order to identify an alternative or adjuvant strategy to the standard antibiotic therapy, the in vitro activity of newly synthesized Silver Ultra-NanoClusters (SUNCs), characterized by an average size inferior to 5 nm, against clinical strains of Helicobacter pylori, with different antibiotic susceptibilities, was evaluated in this study. MICs and MBCs were determined by the broth microdilution method, whereas the effect of drug combinations by the checkerboard assay. The Minimum Biofilm Eradication Concentration (MBEC) was measured using AlamarBlue (AB) assay and Colony Forming Unit (CFU) counts. The cytotoxicity was evaluated by performing the MTT assay on AGS cell line.
The inhibitory activity was expressed in terms of bacteriostatic and bactericidal potential, with MIC50, MIC90, and MBC50 of 0.33 mg/L against planktonic Helicobacter pylori strains. Using the fractional inhibitory concentration index, SUNCs showed synergism with metronidazole in one clinical strain, and very close to synergistic effect on the reference strain; the combination with clarythromicin evidenced an effect very close to synergism on both strains considered. The biofilm eradication was obtained after treatment with 2X, 3X and 4X MIC value.
Moreover, SUNCs showed low toxicity on human cells and was effective in eradicating a mature biofilm produced by H. pylori. The data presented in this study demonstrate that SUNCs could represent a novel strategy for the treatment of H. pylori infections either alone or in combination with metronidazole
Dietary Supplementation with Boswellia serrata, Verbascum thapsus, and Curcuma longa in Show Jumping Horses: Effects on Serum Proteome, Antioxidant Status, and Anti-Inflammatory Gene Expression
Intense exercise can cause inflammation and oxidative stress due to the production of reactive oxygen species. These pathophysiological processes are interdependent, and each one can induce the other, creating a vicious circle. A placebo-controlled blind study was carried out in show jumping horses (n. 16) to evaluate the effects of a commercial dietary supplement (Dolhorse® N.B.F. Lanes srl, Milan, Italy) containing Verbascum thapsus leaf powder (1.42%), Curcuma longa (14.280 mg/kg), and Boswellia serrata (Roxb ex Colebr) (14.280 mg/kg) extracts. Before and after 10 days of dietary supplementation, blood samples were collected to evaluate the protein levels, antioxidants, and inflammatory responses by proteomic analysis or real-time Reverse Transcriptase-Polymerase Chain Reaction (real-time RT-PCR). A total of 36 protein spots, connected to 29 proteins, were modulated by dietary supplementation, whereas real-time RT-PCR revealed a significant downregulation of proinflammatory cytokines (interleukin 1α (p < 0.05) and interleukin-6 (0.005), toll-like receptor 4 (p < 0.05), and IKBKB (p < 0.05) in supplemented sport horses. Immunoglobulin chains, gelsolin, plasminogen, vitamin D binding protein, apolipoprotein AIV, and filamin B were overexpressed, whereas haptoglobin, α-2-HS-glycoprotein, α2-macroglobulin, afamin, amine oxidase, 60S acidic ribosomal protein, and complement fragments 3, 4, and 7 were reduced. No effect was observed on the antioxidant defense systems. The present results suggest this phytotherapy may reinforce the innate immune responses, thus representing a valid adjuvant to alleviate inflammation, which is a pathophysiological process in sport horses
Dietary fiber supplementation increases Drosophila melanogaster lifespan and gut microbiota diversity.
Dietary fiber has been shown to have multiple health benefits, including a positive effect on longevity and the gut microbiota. In the present study, Drosophila melanogaster has been chosen as an in vivo model organism to study the health effects of dietary fiber supplementation (DFS). DFS extended the mean half-life of male and female flies, but the absolute lifespan only increased in females. To reveal the underlying mechanisms, we examined the effect of DFS on gut microbiota diversity and abundance, local gut immunity, and the brain proteome. A significant difference in the gut microbial community was observed between groups with and without fiber supplementation, which reduced the gut pathogenic bacterial load. We also observed an upregulated expression of dual oxidase and a modulated expression of Attacin and Diptericin genes in the gut of older flies, possibly delaying the gut dysbiosis connected to the age-related gut immune dysfunction. Brain proteome analysis showed that DFS led to the modulation of metabolic processes connected to mitochondrial biogenesis, the RhoV-GTPase cycle, organelle biogenesis and maintenance, membrane trafficking and vesicle-mediated transport, possibly orchestrated through a gut–brain axis interaction. Taken together, our study shows that DFS can prolong the half-life and lifespan of flies, possibly by promoting a healthier gut environment and delaying the physiological dysbiosis that characterizes the ageing process. However, the RhoV-GTPase cycle at the brain level may deserve more attention in future studies
Palmitate-induced lipotoxicity alters acetylation of multiple proteins in clonal β cells and human pancreatic islets
Type 2 diabetes is characterized by progressive β cell dysfunction, with lipotoxicity playing a possible pathogenetic role. Palmitate is often used to examine the direct effects of lipotoxicity and it may cause mitochondrial alterations by activating protein acetylation. However, it is unknown whether palmitate influences protein acetylation in β cells. We investigated lysine acetylation in mitochondrial proteins from INS-1E β cells (INS-1E) and in proteins from human pancreatic islets (HPI) after 24 h palmitate exposure. First, we confirmed that palmitate damages β cells and demonstrated that chemical inhibition of deacetylation also impairs INS-1E function and survival. Then, by 2-D gel electrophoresis, Western Blot and Liquid Chromatography-Mass Spectrometry we evaluated the effects of palmitate on protein acetylation. In mitochondrial preparations from palmitate-treated INS-1E, 32 acetylated spots were detected, with 13 proteins resulting over-acetylated. In HPI, 136 acetylated proteins were found, of which 11 were over-acetylated upon culture with palmitate. Interestingly, three proteins, glutamate dehydrogenase, mitochondrial superoxide dismutase, and SREBP-1, were over-acetylated in both INS-1E and HPI. Therefore, prolonged exposure to palmitate induces changes in β cell protein lysine acetylation and this modification could play a role in causing β cell damage. Dysregulated acetylation may be a target to counteract palmitate-induced β cell lipotoxicity
Recommended from our members
A two-stage pneumatic repeating pellet injector for refueling magnetically confined plasmas in long-pulse fusion experiments
An experiment to demonstrate the feasibility of a repetitive pneumatic pellet injector at 1 Hz in the velocity range of 2 to 3 knVs was carried out in a collaboration between Oak Ridge National Laboratory and ENEA Frascati, in the context of a cooperative agreement between the US Department of Energy and EURATOM-ENEA Association. The third round of this experiment was completed in May 1995. Both the operation and performance of the equipment were improved, and the original objectives of the collaboration have been met. The facility was also briefly operated with neon pellets to explore the potential for producing fast ``killer`` pellets for disruption amelioration applications. Speeds of 1.7 km/s were achieved using a piston mass of 43 g. Higher speeds should be achievable with a system specifically designed for neon or other higher Z gases. Finally, tests were performed with thin boron carbide coatings (2 {mu}m) on the Ergal pistons. The test results were encouraging because piston friction was reduced was the piston wear
Persistent or Transient Human β Cell Dysfunction Induced by Metabolic Stress: Specific Signatures and Shared Gene Expression with Type 2 Diabetes
Pancreatic β cell failure is key to type 2 diabetes (T2D) onset and progression. Here, we assess whether human β cell dysfunction induced by metabolic stress is reversible, evaluate the molecular pathways underlying persistent or transient damage, and explore the relationships with T2D islet traits. Twenty-six islet preparations are exposed to several lipotoxic/glucotoxic conditions, some of which impair insulin release, depending on stressor type, concentration, and combination. The reversal of dysfunction occurs after washout for some, although not all, of the lipoglucotoxic insults. Islet transcriptomes assessed by RNA sequencing and expression quantitative trait loci (eQTL) analysis identify specific pathways underlying β cell failure and recovery. Comparison of a large number of human T2D islet transcriptomes with those of persistent or reversible β cell lipoglucotoxicity show shared gene expression signatures. The identification of mechanisms associated with human β cell dysfunction and recovery and their overlap with T2D islet traits provide insights into T2D pathogenesis, fostering the development of improved β cell-targeted therapeutic strategies
Persistent or transient human β cell dysfunction induced by metabolic stress: specific signatures and shared gene expression with type 2 diabetes
Pancreatic β cell failure is key to type 2 diabetes (T2D) onset and progression. Here, we assess whether human β cell dysfunction induced by metabolic stress is reversible, evaluate the molecular pathways underlying persistent or transient damage, and explore the relationships with T2D islet traits. Twenty-six islet preparations are exposed to several lipotoxic/glucotoxic conditions, some of which impair insulin release, depending on stressor type, concentration, and combination. The reversal of dysfunction occurs after washout for some, although not all, of the lipoglucotoxic insults. Islet transcriptomes assessed by RNA sequencing and expression quantitative trait loci (eQTL) analysis identify specific pathways underlying β cell failure and recovery. Comparison of a large number of human T2D islet transcriptomes with those of persistent or reversible β cell lipoglucotoxicity show shared gene expression signatures. The identification of mechanisms associated with human β cell dysfunction and recovery and their overlap with T2D islet traits provide insights into T2D pathogenesis, fostering the development of improved β cell-targeted therapeutic strategies
Heat fixation inactivates viral and bacterial pathogens and is compatible with downstream MALDI mass spectrometry tissue imaging
- …
