68 research outputs found

    Quantifying signal changes in nano-wire based biosensors

    Get PDF
    In this work, we present a computational methodology for predicting the change in signal (conductance sensitivity) of a nano-BioFET sensor (a sensor based on a biomolecule binding another biomolecule attached to a nano-wire field effect transistor) upon binding its target molecule. The methodology is a combination of the screening model of surface charge sensors in liquids developed by Brandbyge and co-workers [Sørensen et al., Appl. Phys. Lett., 2007, 91, 102105], with the PROPKA method for predicting the pH-dependent charge of proteins and protein-ligand complexes, developed by Jensen and co-workers [Li et al., Proteins: Struct., Funct., Bioinf., 2005, 61, 704-721, Bas et al., Proteins: Struct., Funct., Bioinf., 2008, 73, 765-783]. The predicted change in conductance sensitivity based on this methodology is compared to previously published data on nano-BioFET sensors obtained by other groups. In addition, the conductance sensitivity dependence from various parameters is explored for a standard wire, representative of a typical experimental setup. In general, the experimental data can be reproduced with sufficient accuracy to help interpret them. The method has the potential for even more quantitative predictions when key experimental parameters (such as the charge carrier density of the nano-wire or receptor density on the device surface) can be determined (and reported) more accurately. © 2011 The Royal Society of Chemistry

    The Perceived Benefits of Height: Strength, Dominance, Social Concern, and Knowledge among Bolivian Native Amazonians

    Get PDF
    Research in industrial countries suggests that, with no other knowledge about a person, positive traits are attributed to taller people and correspondingly, that taller people have slightly better socioeconomic status (SES). However, research in some non-industrialized contexts has shown no correlation or even negative correlations between height and socioeconomic outcomes. It remains unclear whether positive traits remain attributed to taller people in such contexts. To address this question, here we report the results of a study in a foraging-farming society of native Amazonians in Bolivia (Tsimane’)–a group in which we have previously shown little association between height and socioeconomic outcomes. We showed 24 photographs of pairs of Tsimane’ women, men, boys, and girls to 40 women and 40 men >16 years of age. We presented four behavioral scenarios to each participant and asked them to point to the person in the photograph with greater strength, dominance, social concern, or knowledge. The pairs in the photographs were of the same sex and age, but one person was shorter. Tsimane’ women and men attributed greater strength, dominance, and knowledge to taller girls and boys, but they did not attribute most positive traits to taller adults, except for strength, and more social concern only when women assessed other women in the photographs. These results raise a puzzle: why would Tsimane’ attribute positive traits to tall children, but not tall adults? We propose three potential explanations: adults’ expectations about the more market integrated society in which their children will grow up, height as a signal of good child health, and children’s greater variation in the traits assessed corresponding to maturational stages

    Stereotypic horses (Equus caballus) are not cognitively impaired

    Get PDF
    Stereotypies in animals are thought to arise from an interaction between genetic predisposition and sub-optimal housing conditions. In domestic horses, a well-studied stereotypy is crib-biting, an abnormal behaviour that appears to help individuals to cope with stressful situations. One prominent hypothesis states that animals affected by stereotypies are cognitively less flexible compared to healthy controls, due to sensitization of a specific brain area, the basal ganglia. The aim of this study was to test this hypothesis in crib-biting and healthy controls, using a cognitive task, reversal learning, which has been used as a diagnostic for basal ganglia dysfunction. The procedure consisted of exposing subjects to four learning tasks; first and second acquisition, and their reversals. For each task, we measured the number of trials to reach criterion and heart rate and heart-rate variability. Importantly, we did not try to prevent crib-biters from executing their stereotypic behaviour. We found that the first reversal learning task required the largest number of trials, confirming its challenging nature. Interestingly, the second reversal learning task required significantly fewer trials to reach criterion, suggesting generalisation learning. However, we did not find any performance differences across groups; both stereotypic and control animals required a similar numbers of trials and did not differ in their physiological responses. Our results thus challenge the widely held belief that crib-biting horses, and stereotypic animals more generally, are cognitively impaired. We conclude that cognitive underperformance may occur in stereotypic horses if they are prevented from crib-biting to cope with experienced stress.PostprintPeer reviewe

    Smooth Quantum Hydrodynamic model vs. NEMO Simulation of Resonant Tunneling Diodes

    Get PDF
    The smooth quantum hydrodynamic model is an extension of the classical hydrodynamic model for semiconductor devices which can handle in a mathematically rigorous way the discontinuities in the classical potential energy which occur at heterojunction barriers in quantum semiconductor devices. Smooth QHD model simulations of the current-voltage curves of resonant tunneling diodes are presented which exhibit negative differential resistance—the experimental signal for quantum resonance effects—and are compared with the experimentally verified current-voltage curves predicted by the simulator NEMO, which uses a non-equilibrium Green function method

    Smooth Quantum Hydrodynamic Model Simulation of the Resonant Tunneling Diode

    No full text
    Smooth quantum hydrodynamic (QHD) model simulations of the resonant tunneling diode are presented which exhibit enhanced negative differential resistance (NDR) when compared to simulations using the original O(ÂŻh 2 ) QHD model. At both 300 K and 77 K, the smooth QHD simulations predict significant NDR even when the original QHD model simulations predict no NDR. The original O(ÂŻh 2 ) quantum hydrodynamic (QHD) equations have been remarkably successful in simulating the effects of electron tunneling through potential barriers including single and multiple regions of negative differential resistance and hysteresis in the current-voltage curves of resonant tunneling diodes. However, the model relies on an ad hoc replacement of derivatives of the potential with derivatives of the logarithm of the electron density in order to avoid infinite derivatives at heterojunctions. Refs. [1] and [2] present an extension of the QHD model that is mathematically rigorous for classical potentials wit..
    • …
    corecore