986 research outputs found

    SPS structural dynamics and control workshop: Findings and recommendations

    Get PDF
    The structural dynamics and control of the Solar Power Satellite (SPS), a concept which holds promise for meeting a portion of the energy needs of the United States beyond the year 2000 are examined. The assumptions, methodologies and conclusions of existing SPS studies in the areas of structural dynamics and control (with structural design and materials also being considered) are assessed

    Direct carrier detection by in situ suppression hybridization with cosmid clones of the Duchenne/Becker muscular dystrophy locus

    Get PDF
    A basic problem in genetic counseling of families with Duchenne/Becker muscular dystrophy (DMD/BMD) concerns the carrier status of female relatives of an affected male. In about 60% of these patients, deletions of one or more exons of the dystrophin gene can be identified. These deletions preferentially include exon 45, which can be detected by multiplex polymerase chain reaction (PCR) and Southern blot analysis of genomic cosmid clones that map to this critical region. As a new approach for definitive carrier detection, we have performed chromosomal in situ suppression (CISS) hybridization with these cosmid clones in female relatives of four unrelated patients. In normal females, most metaphases showed signals on both×chromosomes, whereas only one×chromosome was labeled in carriers. Our results demonstrate that CISS hybridization can define the carrier status in female relatives of DMD patients exhibiting a deletion in the dystrophin gene

    Engineering Breadboard Model, Wolf Trap Microbe Detection Device Final Report

    Get PDF
    Engineering breadboard model of microorganism detection device for Mars landing application

    Transferrin-modified chitosan nanoparticles for targeted nose-to-brain delivery of proteins

    Get PDF
    Nose-to-brain delivery presents a promising alternative route compared to classical blood-brain barrier passage, especially for the delivery of high molecular weight drugs. In general, macromolecules are rapidly degraded in physiological environment. Therefore, nanoparticulate systems can be used to protect biomolecules from premature degradation. Furthermore, targeting ligands on the surface of nanoparticles are able to improve bioavailability by enhancing cellular uptake due to specific binding and longer residence time. In this work, transferrin-decorated chitosan nanoparticles are used to evaluate the passage of a model protein through the nasal epithelial barrier in vitro. It was demonstrated that strain-promoted azide-alkyne cycloaddition reaction can be utilized to attach a functional group to both transferrin and chitosan enabling a rapid covalent surface-conjugation under mild reaction conditions after chitosan nanoparticle preparation. The intactness of transferrin and its binding efficiency were confirmed via SDS-PAGE and SPR measurements. Resulting transferrin-decorated nanoparticles exhibited a size of about 110-150 nm with a positive surface potential. Nanoparticles with the highest amount of surface bound targeting ligand also displayed the highest cellular uptake into a human nasal epithelial cell line (RPMI 2650). In an air-liquid interface co-culture model with glioblastoma cells (U87), transferrin-decorated nanoparticles showed a faster passage through the epithelial cell layer as well as increased cellular uptake into glioblastoma cells. These findings demonstrate the beneficial characteristics of a specific targeting ligand. With this chemical and technological formulation concept, a variety of targeting ligands can be attached to the surface after nanoparticle formation while maintaining cargo integrity

    Geographic variation in poststroke depression among veterans with acute stroke

    Get PDF
    This study compared patterns of poststroke depression (PSD) detection among veterans with acute stroke in eight U.S. geographic regions. Department of Veterans Affairs (VA) medical and pharmacy data as well as Medicare data were used. International Classification of Diseases-9th Revision depression codes and antidepressant medication dispensing were applied to define patients’ PSD status 12 months poststroke. Logistic regression models were fit to compare VA PSD diagnosis and overall PSD detection between the regions. The use of VA medical data alone may underestimate the rate of PSD. Geographic variation in PSD detection depended on the data used. If VA medical data alone were used, we found no significant variation. If VA medical data were used along with Medicare and VA pharmacy data, we observed a significant variation in overall PSD detection across the regions after adjusting for potential risk factors. VA clinicians and policy makers need to consider enrollees’ use of services outside the system when conducting program evaluation. Future research on PSD among veteran patients should use VA medical data in combination with Medicare and VA pharmacy data to obtain a comprehensive understanding of patients’ PSD

    CKAP2 ensures chromosomal stability by maintaining the integrity of microtubule nucleation sites

    Get PDF
    Integrity of the microtubule spindle apparatus and intact cell division checkpoints are essential to ensure the fidelity of distributing chromosomes into daughter cells. Cytoskeleton-associated protein 2, CKAP2, is a microtubule-associated protein that localizes to spindle poles and aids in microtubule stabilization, but the exact function and mechanism of action are poorly understood. In the present study, we utilized RNA interference to determine the extent to which the expression of CKAP2 plays a role in chromosome segregation. CKAP2-depleted cells showed a significant increase of multipolar mitoses and other spindle pole defects. Notably, when interrogated for microtubule nucleation capacity, CKAP2-depleted cells showed a very unusual phenotype as early as two minutes after release from mitotic block, consisting of dispersal of newly polymerized microtubule filaments through the entire chromatin region, creating a cage-like structure. Nevertheless, spindle poles were formed after one hour of mitotic release suggesting that centrosome-mediated nucleation remained dominant. Finally, we showed that suppression of CKAP2 resulted in a higher incidence of merotelic attachments, anaphase lagging, and polyploidy. Based on these results, we conclude that CKAP2 is involved in the maintenance of microtubule nucleation sites, focusing microtubule minus ends to the spindle poles in early mitosis, and is implicated in maintaining genome stability

    Weakly Nonlinear Analysis of Electroconvection in a Suspended Fluid Film

    Full text link
    It has been experimentally observed that weakly conducting suspended films of smectic liquid crystals undergo electroconvection when subjected to a large enough potential difference. The resulting counter-rotating vortices form a very simple convection pattern and exhibit a variety of interesting nonlinear effects. The linear stability problem for this system has recently been solved. The convection mechanism, which involves charge separation at the free surfaces of the film, is applicable to any sufficiently two-dimensional fluid. In this paper, we derive an amplitude equation which describes the weakly nonlinear regime, by starting from the basic electrohydrodynamic equations. This regime has been the subject of several recent experimental studies. The lowest order amplitude equation we derive is of the Ginzburg-Landau form, and describes a forward bifurcation as is observed experimentally. The coefficients of the amplitude equation are calculated and compared with the values independently deduced from the linear stability calculation.Comment: 26 pages, 2 included eps figures, submitted to Phys Rev E. For more information, see http://mobydick.physics.utoronto.c

    Actin-dependent intranuclear repositioning of an active gene locus in vivo

    Get PDF
    Although bulk chromatin is thought to have limited mobility within the interphase eukaryotic nucleus, directed long-distance chromosome movements are not unknown. Cajal bodies (CBs) are nuclear suborganelles that nonrandomly associate with small nuclear RNA (snRNA) and histone gene loci in human cells during interphase. However, the mechanism responsible for this association is uncertain. In this study, we present an experimental system to probe the dynamic interplay of CBs with a U2 snRNA target gene locus during transcriptional activation in living cells. Simultaneous four-dimensional tracking of CBs and U2 genes reveals that target loci are recruited toward relatively stably positioned CBs by long-range chromosomal motion. In the presence of a dominant-negative mutant of β-actin, the repositioning of activated U2 genes is markedly inhibited. This supports a model in which nuclear actin is required for these rapid, long-range chromosomal movements

    Isolation and primary cultures of human intrahepatic bile ductular epithelium

    Get PDF
    A technique for the isolation of human intrahepatic bile ductular epithelium, and the establishment of primary cultures using a serum- and growth-factor-supplemented medium combined with a connective tissue substrata is described. Initial cell isolates and monolayer cultures display phenotypic characteristics of biliary epithelial cells (low molecular weight prekeratin positive; albumin, alphafetoprotein, and Factor VIII-related antigen negative). Ultrastructural features of the cultured cells show cell polarization with surface microvilli, numerous interepithelial junctional complexes and cytoplasmic intermediate prekeratin filaments. © 1988 Tissue Culture Association, Inc

    Annular electroconvection with shear

    Full text link
    We report experiments on convection driven by a radial electrical force in suspended annular smectic A liquid crystal films. In the absence of an externally imposed azimuthal shear, a stationary one-dimensional (1D) pattern consisting of symmetric vortex pairs is formed via a supercritical transition at the onset of convection. Shearing reduces the symmetries of the base state and produces a traveling 1D pattern whose basic periodic unit is a pair of asymmetric vortices. For a sufficiently large shear, the primary bifurcation changes from supercritical to subcritical. We describe measurements of the resulting hysteresis as a function of the shear at radius ratio η∼0.8\eta \sim 0.8. This simple pattern forming system has an unusual combination of symmetries and control parameters and should be amenable to quantitative theoretical analysis.Comment: 12 preprint pages, 3 figures in 2 parts each. For more info, see http://mobydick.physics.utoronto.c
    • …
    corecore