578 research outputs found

    The FARCOS project: First characterization of detectors

    Get PDF
    The construction of a new array to study femtoscopy and multiparticle correlations in heavy-ion collisions at intermediate energies (E = 20–1000 AMeV) has been started at the INFN of Catania (Sezione and LNS). The project, named FARCOS (Femtoscope ARray for COrrelations and Spectroscopy) is aimed at the development of a detection system with high pixelation capabilities in order to perform high-precision measurements of two- and multi-particle correlations. The detector will address topics related to the study of reaction dynamics and of the equation of state of asymmetric nuclear matter as well as spectroscopy with both stable and exotic beams. We present first detection simulations for FARCOS telescopes and first experimental results related with the characterization of CsI(Tl) crystals, an important detection stage of each telescope

    Theoretical Estimation of CO2 Compression and Transport Costs for an Hypothetical Carbon and Capture & Storage Requalification of the Saline Joniche Power Plant Project

    Get PDF
    SEI S.p.a. presented a project to build a 1320 MW coal-fired power plant in Saline Joniche, on the Southern tip of Calabria Region, Italy, in 2008. A gross early evaluation about the possibility to add CCS (CO2 Capture & Storage) was performed too. The project generated widespread opposition among environmental associations, citizens and local institutions in that period, against the coal use to produce energy, as a consequence of its GHG clima-alterating impact. Moreover the CCS (also named Carbon Capture & Storage or more recently CCUS: Carbon Capture-Usage-Storage) technology was at that time still an unknown and “mysterious” solution for the GHG avoiding to the atmosphere.   The present study concerns the sizing of the compression and transportation system of the CCS section, included in the project presented at the time by SEI Spa; the sizing of the compression station and the pipeline connecting the plant to the possible Fosca01 offshore injection site previously studied as a possible storage solution, as part of a coarse screening of CO2 storage sites in the Calabria Region. This study takes into account the costs of construction, operation and maintenance (O&M) of both the compression plant and the sound pipeline, considering the gross static storage capacity of the Fosca01 reservoir as a whole as previously evaluated

    Geochemistry of fluids discharged over the seismic area of the Southern Apennines (Calabria region, Southern Italy): Implications for Fluid-Fault relationships

    Get PDF
    The first comprehensive geochemical data-set of the fluids circulating over a 14,000 km2-wide seismicprone area of the Southern Apennines, Calabria Region (Italy), is presented here. The geochemical investigations were carried out with the twofold aim of constraining the origin and interactions of the circulating fluids and to investigate possible relationships with local faults. Sixty samples of both thermal and cold waters were collected, from which the dissolved gases were extracted. The geochemical features of the water samples display different types and degrees of water–rock interactions, irrespective of the outlet temperature. The calculated equilibrium temperatures of the thermal waters (60–160 C) and the low heat flow of thewhole study area, are consistent with a heating process due to deep water circulation and rapid upflow through lithospheric structures. The composition of the dissolved gases reveals that crustal-originating gases (N2 and CO2-dominated) feed all the groundwaters. The 3He/4He ratios of the dissolved He, in the range of 0.03–0.22Rac for the thermal waters and 0.05–0.63Rac for the cold waters (Rac = He isotope ratio corrected for atmospheric contamination), are mainly the result of a two-component (radiogenic and atmospheric) mixing, although indications of mantle-derived He are found in some cold waters. As the study area had been hit by 18 of the most destructive earthquakes (magnitude ranging from 5.9 to 7.2) occurring over a 280-a time span (1626–1908) in the Southern Apennines, the reported results on the circulating fluids may represent the reference for a better inside knowledge of the fault-fluid relationships and for the development of long-term geochemical monitoring strategies for the area

    Optimization methodologies study for the development of prognostic artificial neural network

    Get PDF
    In this work, we discuss the implementation and optimization of an artificial neural network (ANN) based on the analysis of the back-EMF coefficient capable of making electromechanical actuator (EMA) prognostics. Starting from the pseudorandom generation of failure values related to static rotor eccentricity and partial short circuit of the stator coils, we simulated through a MATLAB-Simulink model the values of currents, voltages, position and angular velocity of the rotor and thanks to these we obtained the back-electromotive force which represents the input layer of the ANN. In this paper, we will turn our attention to optimizing the hyperparameters which influence supervised learning and make it more performing in terms of computational cost and complexity. The results are satisfactory dealing with the number of examples present in the available dataset

    Lumped parameters multi-fidelity digital twins for prognostics of electromechanical actuators

    Get PDF
    The growing affirmation of on-board systems based on all-electric secondary power sources is causing a progressive diffusion of electromechanical actuators (EMA) in aerospace applications. As a result, novel prognostic and diagnostic approaches are becoming a critical tool for detecting fault propagation early, preventing EMA performance deterioration, and ensuring acceptable levels of safety and reliability of the system. These approaches often require the development of various types of multiple numerical models capable of simulating the performance of the EMA with different levels of fidelity. In previous publications, the authors already proposed a high-fidelity multi-domain numerical model (HF), capable of accounting for a wide range of physical phenomena and progressive failures in the EMA, and a low-fidelity digital twin (LF). The LF is directly derived from the HF one by reducing the system degrees of freedom, simplifying the EMA control logic, eliminating the static inverter model and the three-phase commutation logic. In this work, the authors propose a new EMA digital twin, called Enhanced Low Fidelity (ELF), that, while still belonging to the simplified types, has particular characteristics that place it at an intermediate level of detail and accuracy between the HF and LF models. While maintaining a low computational cost, the ELF model keeps the original architecture of the three-phase motor and the multidomain approach typical of HF. The comparison of the preliminary results shows a satisfactory consistency between the experimental equipment and the numerical models

    Study of FBG-based optical sensors for thermal measurements in aerospace applications

    Get PDF
    Optical fibers have revolutionized several technological sectors in recent decades, above all that of communication, and have also found many applications in the medical, lighting engineering, and infrastructural fields. In the aerospace field, many studies investigated the adoption of fiber optics considering the planned transition from fly-by-wire to fly-by-light flight controls. A significant feature of optical fiber is its ability to be used not only as a transmission medium but also as a basis for fiber-embedded sensors; one of the most prominent types is based on Bragg gratings (FBGs). FBGs can replace several traditional sensors, providing measures of temperature, vibrations, and mechanical deformation. Optical sensors provide many advantages over traditional, electrical-based sensors, including EMI insensitivity, ease of multiplexing on a single line, resilience to harsh environments, very compact sizes and global weight saving. Furthermore, punctual knowledge of the temperature field is essential to perform the thermal compensation of the optical sensors used for strain measurements. In this work, the authors analyzed the performance of thermal sensors based on FBGs to verify their stability, accuracy, and sensitivity to operating conditions. Two different methods of FBGs surface application have been considered (gluing with pre-tensioning vs. non-tensioned bonding). The results were then compared to those acquired using typical temperature sensors to determine the relationship between the observed temperature and the Bragg wavelength variation (i.e. the proportionality coefficient Kt). The effects on the proportionality coefficient Kt, arising from fiber pre-tensioning and thermal expansion of the structural support, were then evaluated by comparing the results obtained with the two bonding approaches

    The thermal control system of NASA’s Curiosity rover: a case study

    Get PDF
    In any space mission, maintaining subsystems temperature within the allowed limits is a difficult challenge. Parts exposed to the Sun need to be cooled because temperatures rise extremely high, while parts not directly exposed to the Sun need to be heated, because temperatures can drop dramatically. The vacuum does not conduct heat, so the only way to transfer energy is through electromagnetic radiation, generated by the thermal motion of particles in matter. Operating on a planet surface allow convective dissipation and, to a lesser extent, conductive heat dissipation. Furthermore, Mars' thin atmosphere mitigates the strong temperature gradients that would occur in a vacuum. Nevertheless, external parts of the rover are exposed to temperature ranging between – 123°C - +40°C. In this paper, the thermal control system of NASA's Curiosity rover will be presented, analyzing the challenges of maintaining suitable operating conditions in Martian environment and the solutions adopted to allow safe operations

    Diagnostics of electro-mechanical actuators based upon the back-EMF reconstruction

    Get PDF
    Electrical systems are gradually replacing the more traditional hydraulic and pneumatic solutions for the transmission of secondary energy for onboard aircraft equipment. Therefore fault detection and health management strategies properly conceived for electrical devices are becoming a highly relevant topic for research and development in the aerospace disciplines. One possible practical implementation of these methodologies would be the identification of parameters for diagnostic and prognostic monitoring, which are highly sensitive to incipient faults but, at the same time, are less influenced by operating conditions (external loads, command input, temperatures, etc.). In this paper, the authors evaluated the effectiveness of counter-electromotive force (back-EMF) coefficient as a prognostic parameter, emphasizing a novel sampling approach that significantly lower the computational effort required while maintaining a good back-EMF coefficient curve reconstruction. The approach is virtual sensor-like, using only already available data for the correct operation of the BLDC motor. The proposed method was tested by evaluating the back-EMF coefficient reconstruction as a function of some progressive failures typical of EMA motors, such as inter-turn partial shorts and rotor static eccentricity. Its robustness to external disturbances has been tested by evaluating different actuation commands and operating conditions. As expected, the back-EMF signal shows a marked dependence on the considered failure modes and, at the same time, a suitable insensitivity to the other external factors

    Preliminary Analysis on Environmental and Intrinsic Factors on FBG-Based Vibration Sensors

    Get PDF
    In recent years, optical-based sensors have sparked interest for the many advantages over traditional, electrical-based sensors, such as EMI insensitivity, ease of multiplexing on a single line, resilience to hostile environment and very compact size and global weight saving due to signal cables reduction. Considering said properties, optical sensors offer a compelling alternative to traditional sensing elements. One type of optical sensor is the Fiber Braggs Gratings sensors (FBG), which is a type of sensor that reflects a very narrow band of wavelengths, called Bragg wavelength, while being transparent for others; this behavior is achieved by local variations of the core refractive index. The Bragg wavelength can be easily correlated with physical changes in the sensor itself, due to either physical strain or temperature variation. It should be noted that the achievable measurement accuracy is thus comparable to the Bragg wavelength. However, for any practical application, FBGs need to be bonded to a support or surface; in this case, there is a lack of understanding of the effects of temperature and humidity variations on the combined sensor-glue system. In this work, a setup, intended to characterize the sensitivity of the fiber-glue combination to humidity and temperature will be presented
    • …
    corecore