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Abstract. Electrical systems are gradually replacing the more traditional hydraulic and
pneumatic solutions for the transmission of secondary energy for onboard aircraft equipment.
Therefore fault detection and health management strategies properly conceived for electrical
devices are becoming a highly relevant topic for research and development in the aerospace
disciplines. One possible practical implementation of these methodologies would be the
identification of parameters for diagnostic and prognostic monitoring, which are highly sensitive
to incipient faults but, at the same time, are less influenced by operating conditions (external
loads, command input, temperatures, etc.). In this paper, the authors evaluated the effectiveness
of counter-electromotive force (back-EMF) coefficient as a prognostic parameter, emphasizing
a novel sampling approach that significantly lower the computational effort required while
maintaining a good back-EMF coefficient curve reconstruction. The approach is virtual sensor-
like, using only already available data for the correct operation of the BLDC motor. The
proposed method was tested by evaluating the back-EMF coefficient reconstruction as a function
of some progressive failures typical of EMA motors, such as inter-turn partial shorts and
rotor static eccentricity. Its robustness to external disturbances has been tested by evaluating
different actuation commands and operating conditions. As expected, the back-EMF signal
shows a marked dependence on the considered failure modes and, at the same time, a suitable
insensitivity to the other external factors.

1. Introduction
In recent years, the increasing adoption of more electric [1] and all electric [2] design philosophies
thanks to the development of enabling technologies [3] has implied an increased interest in
prognostics and diagnostics for electrical systems. In general, prognostics can be defined as a
scientific discipline with the scope of determination of the failure time of a particular element or
subsystem [4], usually referred to as Remaining Useful Life (RUL); prognostics can be viewed
as being part of a more broad discipline, that is Prognostics and Health Management (PHM),
which has the scope of determination of current system health status, i.e. evaluating system
performance and actual capabilities and integrates with prognostics life estimation, usually with
the scope of implementing a condition-based maintenance doctrine, as in [5], which can lead
to increase safety and decreased operational costs [6]. On the other hand, diagnostics is the
discipline that detect and identify faults of mechanical systems; diagnostics is often included
in a broader discipline referred to as Fault Detection and Isolation (FDI); these definitions are
based on [7, 8].
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2. Methods and objectives
The main objective of the work has been to improve the algorithm presented in [9], to increase
performance, shorten compute time and facilitate the implementation on limited-performance
on-board computers (OBCs). In essence, the algorithm leverages a virtual sensor approach [10]
to predict and quantify faults and current health status of an electromechanical actuator.

2.1. Algorithm overview
The algorithm will now be briefly described, including the modifications that have been made
in order to strongly reduce computation difficulty and thus making execution much more rapid.

Figure 1. Algorithm overview

The first step is the acquisition of important data from sensors that are already present in the
subsystem; such values are phase voltages, phase currents, motor angular position and motor
angular velocity.

After having logged the aforementioned values, the following step is to create a relevant
mapping signal, which in this case is the back-EMF coefficient. Mapping signal have the
properties of being very sensitive to particular faults of interest while being not very much
sensitive to either command signal and external disturbances. In this case, it has been shown
[11] that back-EMF coefficient is strongly affected by electrical faults and is insensitive to external
loads or command imposed.

Next step is to rewrite the back-EMF coefficient as function of angular position (back-EMF
coefficient is originally a time function). In this case, it is useful to express the back-EMF as
function of rotor position since it provides a direct correlation with eccentricity phase.

The back-EMF coefficient map, now a function of rotor angular position, is now sampled with
a suitable number of relevant points distributed across the whole map; these points values will
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be the inputs for the artificial neural network used to perform a regression task on the sampled
data and evaluate current system status and degradation.

One criticality that can be observed is the fact that for this particular application, only the
back-EMF coefficient values of the sampled points are of interests; in fact, sampling the whole
reconstructed back-EMF curve (post-sampling) can be substituted by pre-sampling, i.e. the
value of the back-EMF coefficient can be evaluated only for the point chosen as inputs for the
neural network, thus greatly reducing the points where the curve has to be reconstructed.

2.2. Model overview
In order to create a realistic data for the application of the algorithm, a MATLAB Simulink
model has been adopted [12], modeling an F-16 flaperon actuation system. The model has been
created without major assumptions, except for concentrated parameters, and it is detailed up
to the component level.

In Fig. 2, the top-level view of the whole model can be observed. The two main subsystems
are the trapezoidal EMA block, encompassing the whole system of interest, while the other block,
F16 longitudinal dynamics includes a linearized state-space longitudinal dynamic response of the
whole aircraft.

Figure 2. Model overview

In Fig. 3, a detail of the trapezoidal EMA subsystems can be observed. The main subsystems
present are the Control Electronics PID which models a simple PID controller used to command
the system as function of surface position, the Hall sensors subsystems modeling the fundamental
rotor angular position sensor used for commutation logic control, the Inverter Model which
includes Simscape Electrical transistors blocks and model the usual H-Bridge configuration used
for driving the motor itself, the BLDC electromagnetic model, again modeled using Simscape
Electrical components such as RL branches and finally the the motor transmission model which
is a reducing gear train.

Further information can be found in [11].

2.3. Back-EMF reconstruction and sampling
The first step necessary is the logging of the relevant signal for reconstructing the back-EMF:
such values are the three phases voltages, the three phases currents, the rotor angular position
and rotor angular velocity.

For each timestep, the following electrical equation holds:

Vj − ej = Vj − kbemf,j
˙θm = Rmij + Lm

dij
dt

(1)

where ej is the back-EMF voltage, Rm is the motor nominal resistance and Lm is the motor
nominal inductance.
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Figure 3. Trapezoidal EMA subsystem

It is now possible to express the back-EMF coefficient as function of the rotor angular position
as such:

kbemf,j(θm,k) =
1

n

n∑
l=1

kbemf,j,l((θm,k − ε) ≤ θm ≤ (θm,k + ε)) (2)

which is a simple averaging of all the back-EMF coefficient points that have an angular position
corrispondent to a particular value (θm,k) plus or minus a small tolerance (ε). The process is
repeated for each of the three phases.

Finally, the equivalent single phase kbemf is computed as such:

kbemf =
∑

j=1,2,3

|kbemf,j | (3)

The curves visible in Fig. 4 are reconstructed and sampled back-EMF coefficient curves seeded
using random fault values.

3. Pre-sampling vs. post-sampling
Referring to Fig. 5, the top graph is obtained with the post-sampling approach, that is by first
reconstructing the whole curve and then sampling the points of interest, while the bottom graph
is obtained by using pre-sampling, that is reconstruction of the back-EMF coefficient only in
the points of interest.

The main benefit of this approach is speed, given the fact that the average reconstruction
and sampling time as presented in [9] is 0.228 s/curve, while using pre-sampling technique the
average reconstruction and sampling time is reduced to 0.005 s/curve, thus achieving a speed-up
factor greater than 42×.

On the other hand, the post-sampled curve (Fig. 5, top) is smoother (all curves are obtained
assuming only a single phase partial short, with value increasing from blue curve to green curve),
but the reconstructed shape is similar for both approaches.
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Figure 4. Reconstructed and sampled back-EMF coefficient curves [9]

Figure 5. Comparison between post-sampling and pre-sampling approaches

In both cases, 18 points have been sampled for each electrical revolution (i.e. 180o mechanical
since a two-pole motor is considered), thus sampling 3 different points for each of the 6 electrical
commutations present in a full electrical revolution.

It has to be noted that point 16 (third to last) assumes remarkably different values by
switching to pre-sampling. In fact, referring to Fig. 6, it is clearly visible that the error on point
16 is disproportionately larger compared to the other points.
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For all the sampled points, the average (calculated on 100 simulations) median error is 2.81%,
the minimum median is 0.003% relative to point 8, while the maximum median error is 28.21%
for point 16.
Standard deviation has an average value of 1.81%, minimum standard deviation is observed for
point 8 with an average value of 0.003% and a maximum average standard deviation for point
16 with a value of 11.89%.

In general, the method is much faster and achieves very good global accuracy.

Figure 6. Box plot showing mean relative error between post- and pre-sampling logic

4. Conclusions
As previously shown, using a pre-sampling approach can greatly reduce the computational cost
and thus increase speed and it is a necessary step to allow the implementation on limited
operational hardware on an aircraft, given the high computational limitation imposed by on-
board computers.

A future work can be the optimization of the sample points choice in order to minimize
error and variance for curves obtained by using different fault parameters and in particular
by considering multiple faults at the same time; finally, the method has to be validated using
neural networks as in [9] and then on real hardware before possible implementation on OBCs
(On-board computers) of airworthy aircraft.
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