13,670 research outputs found
Fourier domain preconditioned conjugate gradient algorithm for atmospheric tomography
By 'atmospheric tomography' we mean the estimation of a layered atmospheric turbulence profile from measurements of the pupil-plane phase (or phase gradients) corresponding to several different guide star directions. We introduce what we believe to be a new Fourier domain preconditioned conjugate gradient (FD-PCG) algorithm for atmospheric tomography, and we compare its performance against an existing multigrid preconditioned conjugate gradient (MG-PCG) approach. Numerical results indicate that on conventional serial computers, FD-PCG is as accurate and robust as MG-PCG, but it is from one to two orders of magnitude faster for atmospheric tomography on 30 m class telescopes. Simulations are carried out for both natural guide stars and for a combination of finite-altitude laser guide stars and natural guide stars to resolve tip-tilt uncertainty
TGF-β signaling links E-cadherin loss to suppression of nucleotide excision repair.
E-cadherin is a cell adhesion molecule best known for its function in suppressing tumor progression and metastasis. Here we show that E-cadherin promotes nucleotide excision repair through positively regulating the expression of xeroderma pigmentosum complementation group C (XPC) and DNA damage-binding protein 1 (DDB1). Loss of E-cadherin activates the E2F4 and p130/107 transcription repressor complexes to suppress the transcription of both XPC and DDB1 through activating the transforming growth factor-β (TGF-β) pathway. Adding XPC or DDB1, or inhibiting the TGF-β pathway, increases the repair of ultraviolet (UV)-induced DNA damage in E-cadherin-inhibited cells. In the mouse skin and skin tumors, UVB radiation downregulates E-cadherin. In sun-associated premalignant and malignant skin neoplasia, E-cadherin is downregulated in association with reduced XPC and DDB1 levels. These findings demonstrate a crucial role of E-cadherin in efficient DNA repair of UV-induced DNA damage, identify a new link between epithelial adhesion and DNA repair and suggest a mechanistic link of early E-cadherin loss in tumor initiation
Improvement of modal scaling factors using mass additive technique
A general investigation into the improvement of modal scaling factors of an experimental modal model using additive technique is discussed. Data base required by the proposed method consists of an experimental modal model (a set of complex eigenvalues and eigenvectors) of the original structure and a corresponding set of complex eigenvalues of the mass-added structure. Three analytical methods,i.e., first order and second order perturbation methods, and local eigenvalue modification technique, are proposed to predict the improved modal scaling factors. Difficulties encountered in scaling closely spaced modes are discussed. Methods to compute the necessary rotational modal vectors at the mass additive points are also proposed to increase the accuracy of the analytical prediction
Phase-reference VLBI Observations of the Compact Steep-Spectrum Source 3C 138
We investigate a phase-reference VLBI observation that was conducted at 15.4
GHz by fast switching VLBA antennas between the compact steep-spectrum radio
source 3C 138 and the quasar PKS 0528+134 which are about 4 away on the
sky. By comparing the phase-reference mapping with the conventional hybrid
mapping, we demonstrate the feasibility of high precision astrometric
measurements for sources separated by 4. VLBI phase-reference mapping
preserves the relative phase information, and thus provides an accurate
relative position between 3C 138 and PKS 0528+134 of
and
(J2000.0) in right ascension and declination, respectively. This gives an
improved position of the nucleus (component A) of 3C 138 in J2000.0 to be
RA= and Dec= under the
assumption that the position of calibrator PKS 0528+134 is correct. We further
made a hybrid map by performing several iterations of CLEAN and
self-calibration on the phase-referenced data with the phase-reference map as
an input model for the first phase self-calibration. Compared with the hybrid
map from the limited visibility data directly obtained from fringe fitting 3C
138 data, this map has a similar dynamic range, but a higher angular
resolution. Therefore, phase-reference technique is not only a means of phase
connection, but also a means of increasing phase coherence time allowing
self-calibration technique to be applied to much weaker sources.Comment: 9 pages plus 2 figures, accepted by PASJ (Vol.58 No.6
On the origin of the Fermi arc phenomena in the underdoped cuprates: signature of KT-type superconducting transition
We study the effect of thermal phase fluctuation on the electron spectral
function in a d-wave superconductor with Monte Carlo simulation.
The phase degree of freedom is modeled by a XY-type model with build-in d-wave
character. We find a ridge-like structure emerges abruptly on the underlying
Fermi surface in above the KT-transition temperature of the XY
model. Such a ridge-like structure, which shares the same characters with the
Fermi arc observed in the pseudogap phase of the underdoped cuprates, is found
to be caused by the vortex-like phase fluctuation of the XY model.Comment: 5 page
Bound State Solutions of Klein-Gordon Equation with the Kratzer Potential
The relativistic problem of spinless particle subject to a Kratzer potential
is analyzed. Bound state solutions for the s-wave are found by separating the
Klein-Gordon equation in two parts, unlike the similar works in the literature,
which provides one to see explicitly the relativistic contributions, if any, to
the solution in the non-relativistic limit.Comment: 6 page
- …
