116 research outputs found

    Stabilization of Charged Polysaccharide Film Forming Solution by Sodium Chloride: Nanoparticle Z-Average and Zeta-Potential Monitoring

    Get PDF
    Different natural biopolymers are becoming the issue of an expanding number of studies reporting their potential applications in food, pharmaceutical and cosmetic technologies, as well as in tissues engineering . In this respect, the utilization of charged polysaccharides like chitosan (CH) or pectin (PEC) appears to be one of the most interesting way in manufacturing of biodegradable new materials

    Twitter journal clubs and continuing professional development: An analysis of a #MedRadJClub tweet chat

    Get PDF
    Introduction Online Twitter journal clubs are a recent and popular innovation with the potential to increase research awareness and inform practice. The medical radiation sciences' MedRadJournalClub (MJRC) is a Twitter-based event that attracts a global group of participants at the monthly chats. An analysis of a recent MedRadJournalClub discussion evaluated the perceived benefits and limitations of medical radiation practitioners participating in an online journal club. Methods The February 2017 chat used for analysis was based on the Journal of Medical Imaging and Radiation Sciences article by Currie et al. “Twitter Journal Club in Medical Radiation Science” that examines the educational theory behind learning and evidencing professional development through MRJC and social media. The data consisted of chat tweets which were collated using the Twitter advanced search function using the #medradjclub. An initial reviewed was performed to exclude irrelevant content. A second review was then undertaken to categorize the main theme of the tweet. The data were then subjected to thematic analysis which yielded seven different categories. Results The main benefits included global access due to the online nature of MRJC that has facilitated networking and collaboration. Open access to recently published research was another key benefit. The character limitation of a tweet was the most common constraint, and the dynamic nature of the twitter conversation requires multi-tasking that may be difficult. Conclusion Our analysis indicated that participants use MedRadJournalClub as a source of continuing professional development with some evidence that this is directly informing clinical and educational practice

    A roadmap to engaging patients in research: The experience of a large academic research hospital in Canada

    Get PDF
    Recent definitions of patient engagement in research (PER) emphasize that engagement should be meaningful, active and an equal collaboration across the research continuum. The increased interest in patient engagement is predicated on the recognition by researchers of the unique experiential knowledge provided by individuals with lived experience, ethical obligations to democratize science and that patient involvement can potentially lead to improved outcomes for patients and researchers. Sunnybrook Health Sciences Center is a large academic research hospital in Toronto, Canada which aimed to create clearer pathways for patients to have a more prominent voice in the development, implementation, and dissemination of research. However, to ensure that the policies, practices and resources to support PER would be viewed as meaningful to all stakeholders (including, but not limited to, administrators, clinicians, clinician researchers, scientists, patients, family members and caregivers), a series of structured activities were undertaken to foster collective buy-in and co-create an operational implementation plan for PER. The activities consisted of a consecutive mixed methods approach of three phases of discovery: a survey, focus groups and interviews, and an in-person town hall. We describe our approach to implementation and operationalization of PER at an academic hospital based on five identified priority themes: education and training, partnerships, matching programs, policies and measures. Experience Framework This article is associated with the Patient, Family & Community Engagement lens of The Beryl Institute Experience Framework (https://www.theberylinstitute.org/ExperienceFramework). Access other PXJ articles related to this lens. Access other resources related to this lens

    Influenza vaccine uptake among community-dwelling Italian elderly: results from a large cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flu vaccination significantly reduces the risk of serious complications like hospitalization and death among community-dwelling older people, therefore vaccination programmes targeting this population group represent a common policy in developed Countries. Among the determinants of vaccine uptake in older age, a growing literature suggests that social relations can play a major role.</p> <p>Methods</p> <p>Drawing on the socio-behavioral model of Andersen-Newman - which distinguishes predictors of health care use in predisposing characteristics, enabling resources and need factors - we analyzed through multilevel regressions the determinants of influenza immunization in a sample of 25,183 elderly reached by a nationally representative Italian survey.</p> <p>Results</p> <p>Being over 85-year old (OR = 1.99; 95% CI 1.77 - 2.21) and suffering from a severe chronic disease (OR = 2.06; 95% CI 1.90 - 2.24) are the strongest determinants of vaccine uptake. Being unmarried (OR = 0.81; 95% CI 0.74 - 0.87) and living in larger households (OR = 0.83; 95% CI 0.74 - 0.87) are risk factors for lower immunization rates. Conversely, relying on neighbors' support (OR = 1.09; 95% CI 1.02 - 1.16) or on privately paid home help (OR = 1.19; 95% CI 1.08 - 1.30) is associated with a higher likelihood of vaccine uptake.</p> <p>Conclusions</p> <p>Even after adjusting for socio-demographic characteristics and need factors, social support, measured as the availability of assistance from partners, neighbors and home helpers, significantly increases the odds of influenza vaccine use among older Italians.</p

    Altered gene expression and DNA damage in peripheral blood cells from Friedreich's ataxia patients: Cellular model of pathology

    Get PDF
    The neurodegenerative disease Friedreich's ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial and nuclear DNA damage in the blood of these patients (p<0.0001, respectively). Additionally, frataxin mRNA levels correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response, oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in future clinical trials

    Impaired Nuclear Nrf2 Translocation Undermines the Oxidative Stress Response in Friedreich Ataxia

    Get PDF
    BACKGROUND: Friedreich ataxia originates from a decrease in mitochondrial frataxin, which causes the death of a subset of neurons. The biochemical hallmarks of the disease include low activity of the iron sulfur cluster-containing proteins (ISP) and impairment of antioxidant defense mechanisms that may play a major role in disease progression. METHODOLOGY/PRINCIPAL FINDINGS: We thus investigated signaling pathways involved in antioxidant defense mechanisms. We showed that cultured fibroblasts from patients with Friedreich ataxia exhibited hypersensitivity to oxidative insults because of an impairment in the Nrf2 signaling pathway, which led to faulty induction of antioxidant enzymes. This impairment originated from previously reported actin remodeling by hydrogen peroxide. CONCLUSIONS/SIGNIFICANCE: Thus, the defective machinery for ISP synthesis by causing mitochondrial iron dysmetabolism increases hydrogen peroxide production that accounts for the increased susceptibility to oxidative stress

    Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3.

    Get PDF
    Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-d pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible approach to treatment.This study was funded by NIH grant NS073976 to TKH and a John Sealy Grant to PSS

    Limitations in a frataxin knockdown cell model for Friedreich ataxia in a high-throughput drug screen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pharmacological high-throughput screening (HTS) represents a powerful strategy for drug discovery in genetic diseases, particularly when the full spectrum of pathological dysfunctions remains unclear, such as in Friedreich ataxia (FRDA). FRDA, the most common recessive ataxia, results from a generalized deficiency of mitochondrial and cytosolic iron-sulfur cluster (ISC) proteins activity, due to a partial loss of frataxin function, a mitochondrial protein proposed to function as an iron-chaperone for ISC biosynthesis. In the absence of measurable catalytic function for frataxin, a cell-based assay is required for HTS assay.</p> <p>Methods</p> <p>Using a targeted ribozyme strategy in murine fibroblasts, we have developed a cellular model with strongly reduced levels of frataxin. We have used this model to screen the Prestwick Chemical Library, a collection of one thousand off-patent drugs, for potential molecules for FRDA.</p> <p>Results</p> <p>The frataxin deficient cell lines exhibit a proliferation defect, associated with an ISC enzyme deficit. Using the growth defect as end-point criteria, we screened the Prestwick Chemical Library. However no molecule presented a significant and reproducible effect on the proliferation rate of frataxin deficient cells. Moreover over numerous passages, the antisense ribozyme fibroblast cell lines revealed an increase in frataxin residual level associated with the normalization of ISC enzyme activities. However, the ribozyme cell lines and FRDA patient cells presented an increase in Mthfd2 transcript, a mitochondrial enzyme that was previously shown to be upregulated at very early stages of the pathogenesis in the cardiac mouse model.</p> <p>Conclusion</p> <p>Although no active hit has been identified, the present study demonstrates the feasibility of using a cell-based approach to HTS for FRDA. Furthermore, it highlights the difficulty in the development of a stable frataxin-deficient cell model, an essential condition for productive HTS in the future.</p

    Histone deacetylases suppress cgg repeat-induced neurodegeneration via transcriptional silencing in models of Fragile X Tremor Ataxia Syndrome

    Get PDF
    Fragile X Tremor Ataxia Syndrome (FXTAS) is a common inherited neurodegenerative disorder caused by expansion of a CGG trinucleotide repeat in the 59UTR of the fragile X syndrome (FXS) gene, FMR1. The expanded CGG repeat is thought to induce toxicity as RNA, and in FXTAS patients mRNA levels for FMR1 are markedly increased. Despite the critical role of FMR1 mRNA in disease pathogenesis, the basis for the increase in FMR1 mRNA expression is unknown. Here we show that overexpressing any of three histone deacetylases (HDACs 3, 6, or 11) suppresses CGG repeat-induced neurodegeneration in a Drosophila model of FXTAS. This suppression results from selective transcriptional repression of the CGG repeat-containing transgene. These findings led us to evaluate the acetylation state of histones at the human FMR1 locus. In patient-derived lymphoblasts and fibroblasts, we determined by chromatin immunoprecipitation that there is increased acetylation of histones at the FMR1 locus in pre-mutation carriers compared to control or FXS derived cell lines. These epigenetic changes correlate with elevated FMR1 mRNA expression in pre-mutation cell lines. Consistent with this finding, histone acetyltransferase (HAT) inhibitors repress FMR1 mRNA expression to control levels in pre-mutation carrier cell lines and extend lifespan in CGG repeat-expressing Drosophila. These findings support a disease model whereby the CGG repeat expansion in FXTAS promotes chromatin remodeling in cis, which in turn increases expression of the toxic FMR1 mRNA. Moreover, these results provide proof of principle that HAT inhibitors or HDAC activators might be used to selectively repress transcription at the FMR1 locus.open293

    Blood Cell Mitochondrial DNA Content and Premature Ovarian Aging.

    Get PDF
    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction
    corecore