3,843 research outputs found
The Exciting Lives of Giant Molecular Clouds
We present a detailed study of the evolution of GMCs in a galactic disc
simulation. We follow individual GMCs (defined in our simulations by a total
column density criterion), including their level of star formation, from their
formation to dispersal. We find the evolution of GMCs is highly complex. GMCs
often form from a combination of smaller clouds and ambient ISM, and similarly
disperse by splitting into a number of smaller clouds and ambient ISM. However
some clouds emerge as the result of the disruption of a more massive GMC,
rather than from the assembly of smaller clouds. Likewise in some cases, clouds
accrete onto more massive clouds rather than disperse. Because of the
difficulty of determining a precursor or successor of a given GMC, determining
GMC histories and lifetimes is highly non-trivial. Using a definition relating
to the continuous evolution of a cloud, we obtain lifetimes typically of 4-25
Myr for >10^5 M GMCs, over which time the star formation efficiency
is about 1 %. We also relate the lifetime of GMCs to their crossing time. We
find that the crossing time is a reasonable measure of the actual lifetime of
the cloud, although there is considerable scatter. The scatter is found to be
unavoidable because of the complex and varied shapes and dynamics of the
clouds. We study cloud dispersal in detail and find both stellar feedback and
shear contribute to cloud disruption. We also demonstrate that GMCs do not
behave as ridge clouds, rather massive spiral arm GMCs evolve into smaller
clouds in inter-arm spurs.Comment: 15 pages, 16 figures, accepted for publication in MNRA
An Investigation into the Geometry of Seyfert Galaxies
We present a new method for the statistical investigation into the
distributions of the angle beta between the radio axis and the normal to the
galactic disk for a sample of Seyfert galaxies. We discuss how further
observations of the sample galaxies can strengthen the conclusions. Our data
are consistent with the hypothesis that AGN jets are oriented randomly in
space, independent of the position of the plane of the galaxy. By making the
simple assumption that the Standard Model of AGN holds, with a universal
opening angle of the thick torus of phi_c, we demonstrate a statistical method
to obtain an estimate of phi_c. Our data are not consistent with the
simple-minded idea that Seyfert 1s and Seyfert 2s are differentiated solely by
whether or not our line of sight lies within some fixed angle of the jet axis.
Our result is significant on the 2 sigma level and can thus be considered only
suggestive, not conclusive. A complete sample of Seyfert galaxies selected on
an isotropic property is required to obtain a conclusive result.Comment: 13 pages, Tex, 5 Postscript figures. Accepted Ap
MIUS Integration and Subsystem Test (MIST) data system
A data system for use in testing integrated subsystems of a modular integrated utility system (MIUS) is presented. The MIUS integration and subsystem test (MIST) data system is reviewed from its conception through its checkout and operation as the controlling portion of the MIST facility. The MIST data system provides a real time monitoring and control function that allows for complete evaluation of the performance of the mechanical and electrical subsystems, as well as controls the operation of the various components of the system. In addition to the aforementioned capabilities, the MIST data system provides computerized control of test operations such that minimum manpower is necessary to set up, operate, and shut down subsystems during test periods
The alignment of disk and black hole spins in active galactic nuclei
The inner parts of an accretion disk around a spinning black hole are forced
to align with the spin of the hole by the Bardeen-Petterson effect. Assuming
that any jet produced by such a system is aligned with the angular momentum of
either the hole or the inner disk, this can, in principle provide a mechanism
for producing steady jets in AGN whose direction is independent of the angular
momentum of the accreted material. However, the torque which aligns the inner
disk with the hole, also, by Newton's third law, tends to align the spin of the
hole with the outer accretion disk. In this letter, we calculate this alignment
timescale for a black hole powering an AGN, and show that it is relatively
short. This timescale is typically much less than the derived ages for jets in
radio loud AGN, and implies that the jet directions are not in general
controlled by the spin of the black hole. We speculate that the jet directions
are most likely controlled either by the angular momentum of the accreted
material or by the gravitational potential of the host galaxy.Comment: 4 pages, LateX file, accepted for publication in ApJ Letter
Nonuniform viscosity in the solar nebula and large masses of Jupiter and Saturn
I report a novel theory that nonuniform viscous frictional force in the solar
nebula accounts for the largest mass of Jupiter and Saturn and their largest
amount of H and He among the planets, two outstanding facts that are unsolved
puzzles in our understanding of origin of the Solar System. It is shown that
the nebula model of uniform viscosity does not match the present planet masses.
By studying current known viscosity mechanisms, I show that viscosity is more
efficient in the inner region inside Mercury and the outer region outside
Jupiter-Saturn than the intermediate region. The more efficient viscosity
drives faster radial inflow of material during the nebula evolution. Because
the inflow in the outer region is faster than the intermediate region, the
material tends to accumulate in Jupiter-Saturn region which is between the
outer and intermediate region. It is demonstrated that the gas trapping time of
Jovian planets is longer than the inflow time in the outer region. Therefore
the gas already flows to Jupiter-Saturn region before Uranus and Neptune can
capture significant gas. But the inflow in the Jupiter-Saturn region is so slow
that they can capture large amount of gas before the gas can flow further
inward. Hence they have larger masses with larger H and He content than Uranus
and Neptune. I also extend the discussion to the masses of the terrestrial
planets, especially low mass of Mercury. The advantages of this theory are
discussed.Comment: 4 pages, 1 figure, A&A Letters accepte
Technology evaluation of control/monitoring systems for MIUS application
Potential ways of providing control and monitoring for the Modular Integrated Utility System (MIUS) program are elaborated. Control and monitoring hardware and operational systems are described. The requirements for the MIUS program and the development requirements are discussed
Megamaser Disks in Active Galactic Nuclei
Recent spectroscopic and VLBI-imaging observations of bright extragalactic
water maser sources have revealed that the megamaser emission often originates
in thin circumnuclear disks near the centers of active galactic nuclei (AGNs).
Using general radiative and kinematic considerations and taking account of the
observed flux variability, we argue that the maser emission regions are clumpy,
a conclusion that is independent of the detailed mechanism (X-ray heating,
shocks, etc.) driving the collisionally pumped masers. We examine scenarios in
which the clumps represent discrete gas condensations (i.e., clouds) and do not
merely correspond to velocity irregularities in the disk. We show that even two
clouds that overlap within the velocity coherence length along the line of
sight could account (through self-amplification) for the entire maser flux of a
high-velocity ``satellite'' feature in sources like NGC 4258 and NGC 1068, and
we suggest that cloud self-amplification likely contributes also to the flux of
the background-amplifying ``systemic'' features in these objects. Analogous
interpretations have previously been proposed for water maser sources in
Galactic star-forming regions. We argue that this picture provides a natural
explanation of the time-variability characteristics of extragalactic megamaser
sources and of their apparent association with Seyfert 2-like galaxies. We also
show that the requisite cloud space densities and internal densities are
consistent with the typical values of nuclear (broad emission-line region-type)
clouds.Comment: 55 pages, 7 figures, AASTeX4.0, to appear in The Astrophysical
Journal (1999 March 1 issue
- …