18 research outputs found

    Direct evidence for phosphorus limitation on Amazon forest productivity

    Get PDF
    The productivity of rainforests growing on highly weathered tropical soils is expected to be limited by phosphorus availability1. Yet, controlled fertilization experiments have been unable to demonstrate a dominant role for phosphorus in controlling tropical forest net primary productivity. Recent syntheses have demonstrated that responses to nitrogen addition are as large as to phosphorus2, and adaptations to low phosphorus availability appear to enable net primary productivity to be maintained across major soil phosphorus gradients3. Thus, the extent to which phosphorus availability limits tropical forest productivity is highly uncertain. The majority of the Amazonia, however, is characterized by soils that are more depleted in phosphorus than those in which most tropical fertilization experiments have taken place2. Thus, we established a phosphorus, nitrogen and base cation addition experiment in an old growth Amazon rainforest, with a low soil phosphorus content that is representative of approximately 60% of the Amazon basin. Here we show that net primary productivity increased exclusively with phosphorus addition. After 2 years, strong responses were observed in fine root (+29%) and canopy productivity (+19%), but not stem growth. The direct evidence of phosphorus limitation of net primary productivity suggests that phosphorus availability may restrict Amazon forest responses to CO2 fertilization4, with major implications for future carbon sequestration and forest resilience to climate change.The authors acknowledge funding from the UK Natural Environment Research Council (NERC), grant number NE/L007223/1. This is publication 850 in the technical series of the BDFFP. C.A.Q. acknowledges the grants from Brazilian National Council for Scientific and Technological Development (CNPq) CNPq/LBA 68/2013, CNPq/MCTI/FNDCT no. 18/2021 and his productivity grant. C.A.Q., H.F.V.C., F.D.S., I.A., L.F.L., E.O.M. and S.G. acknowledge the AmazonFACE programme for financial support in cooperation with Coordination for the Improvement of Higher Education Personnel (CAPES) and the National Institute of Amazonian Research as part of the grants CAPES-INPA/88887.154643/2017-00 and 88881.154644/2017-01. T.F.D. acknowledges funds from FundacAo de Amparo a Pesquisa do Estado de SAo Paulo (FAPESP), grant 2015/50488-5, and the Partnership for Enhanced Engagement in Research (PEER) programme grant AID-OAA-A-11-00012. L.E.O.C.A. thanks CNPq (314416/2020-0)

    University quality measurement model based on balanced scorecard

    Get PDF
    A Higher Education Institution (HEI) has the responsibility to track the processes through indicators that guarantee the measurement of the results in almost real time. This article presents the design of a management and quality model of the processes in a university, through the integration of a Balance Scorecard (BSC) and the implementation of an information system. For which it was required: a review of existing tracing and monitoring systems in the academic sector, definition of the requirements of the proposed technological, a diagnosis of the current measurement system of the HEI analyzed, identify measurement indicators and develop a technological tool. The designed model presents a precise and clear methodological guide that can be replicated in any HEI to monitor its processes

    Envejecimiento de la poblaciĂłn

    Get PDF
    •Actividades básicas de la vida diaria en personas mayores y factores asociados •Asociación entre depresión y posesión de mascotas en personas mayores •Calidad de vida en adultos mayores de Santiago aplicando el instrumento WHOQOL-BREF •Calidad de vida en usuarios con enfermedad de Parkinson, demencia y sus cuidadores, comuna de Vitacura •Caracterización de egresos hospitalarios de adultos mayores en Puerto Natales (2007-2009) •Comportamiento de las patologías incluidas como GES para el adulto mayor atendido en un Cesfam •Contribución de vitaminas y minerales a las ingestas recomendadas diarias en ancianos institucionalizados de Madrid •Estado de salud oral del paciente inscrito en el Programa de Visita Domiciliaria •Evaluación del programa de discapacidad severa en Casablanca con la matriz de marco lógico •Factores asociados a satisfacción vital en una cohorte de adultos mayores de Santiago, Chile •Pauta instrumental para la identificación de riesgos para el adulto mayor autovalente, en su vivienda •Perfil farmacológico del paciente geriátrico institucionalizado y posibles consecuencias en el deterioro cognitivo •Programa de cuidados paliativos y alivio del dolor en Puerto Natales •Rehabilitación mandibular implantoprotésica: efecto en calidad de vida relacionada con salud bucal en adultos mayores •Salud bucodental en adultos mayores autovalentes de la Región de Valparaíso •Transición epidemiológica y el estudio de carga de enfermedad en Brasi

    Direct evidence for phosphorus limitation on Amazon forest productivity

    Get PDF
    The productivity of rainforests growing on highly weathered tropical soils is expected to be limited by phosphorus availability1. Yet, controlled fertilization experiments have been unable to demonstrate a dominant role for phosphorus in controlling tropical forest net primary productivity. Recent syntheses have demonstrated that responses to nitrogen addition are as large as to phosphorus2, and adaptations to low phosphorus availability appear to enable net primary productivity to be maintained across major soil phosphorus gradients3. Thus, the extent to which phosphorus availability limits tropical forest productivity is highly uncertain. The majority of the Amazonia, however, is characterized by soils that are more depleted in phosphorus than those in which most tropical fertilization experiments have taken place2. Thus, we established a phosphorus, nitrogen and base cation addition experiment in an old growth Amazon rainforest, with a low soil phosphorus content that is representative of approximately 60% of the Amazon basin. Here we show that net primary productivity increased exclusively with phosphorus addition. After 2 years, strong responses were observed in fine root (+29%) and canopy productivity (+19%), but not stem growth. The direct evidence of phosphorus limitation of net primary productivity suggests that phosphorus availability may restrict Amazon forest responses to CO2 fertilization4, with major implications for future carbon sequestration and forest resilience to climate change
    corecore